JARECT Vol. 12, Computer Science & Technologies {1984), T. Kitagawaled.)
OHMSHA, LTD. and North-Holland Publishing Co.
©OHMSHA, LTD. 1984

1.8 Problem Analysis Diagram (PAD)*

Yoshihiko FUTAMURA** and Toshio KAW AT***

Abstract
This paper presents a limited number of diagram types and their construction rules that
are used for depicting program structures. The diagramming method presented is called the
PAD (Problem Analysis Diagram) and aims at:
(1) Visualizing program structures;
(2) Establishing systematic rules for coding and testing programs; and
(3) .Describing data structures in the same manner as program structures.
This method is proposed as a functionally superior substitute for flowcharts. The fact
that some 10 000 Japanese programmers have converted from conventional charts to PAD
within the last four years is indicative of the broad potential utility of this notation.

1.8.1 Introduction

It was Goldstein and Neumanii in the 1940’s who said “Coding begins with the drawing
of the flow diagrams”.” Since then, it has been the custom of most programmers to draw
flowcharts before programming.

However, defects in flowcharts have developed with the advent of higher level pro-
gramming languages and structured programming.? Improvements in programming charts
that have been proposed include NS chart,'® Ferstl chart® and many others.?>!? These incor-
porate notions of structured programming and stepwise refinement.*? Methods of describing
program logic directly by structured language (as with PASCAL) or by pseudo-code (as with
PDL) without using flowcharts have also been proposed.? However, these methods are not as
widely used as flowcharting. This paper presents a new diagramming method, the PAD
(Problem Analysis Diagram), that aims at:

(1) Visualizing program structures;
(2) Establishing systematic rules for coding and testing programs; and
(3) Describing data structures in the same manner as program structures.

The last two features, (2) and (3), were original to PAD, to the best of our knowledge,
when it was first published in 1979 (in Japanese)® and in 1981 (in English).” PAD has evolved
as an improvement of the Warnier Diagram.? The resulting diagram coincides with a diagram
expressing the structured language. PAD might also be interpreted as PAscal Diagram, since

* This paper is a revised and extended version of the paper presented at the 5th International Conference on

Software Engineering (1981).
** Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185.
**¥ Faculty of Science and Engineering, Keio University, Yokohama 223.

97

PROBLEM ANALYSIS DIAGRAM (PAD)

the original control structures for PAD were defined based on PASCAL.!?

PAD has been applied to work in developing various programs (OS, application pro-
grams, etc.) for machines ranging from programmable desk calculators to large computers. It
has also been evaluated as being superior to conventional charts” and PDL.!®

1.8.2 Comparison of Diagramming Methods

It is a well known theorem in computer science that any computation can be described
in three basic structures: sequencing, repetition and selection. These are shown both in PAD
and flowchart in Fig. 1.8.1. Figure 1.8.2 shows an example PAD and the equivalent flowchart.
Based upon the theorem, it is reasonable to define a program structure as the combination of
the basic structures. Therefore, when we say a program structure is visible, it means that rela-
tionships between basic structures are easily visible.

Flowcharts are readable when they describe such very simple structures as are shown in
Figs.1.8.1 and 1.8.2. Let us look at the more complex structures shown in Fig. 1.8.3. Although
they represent identical computations, two flowcharts in Fig. 1.8.3 look different. The dia-
mond 3 in the upper chart looks repetitive, while the one in the lower chart looks selective.

B [a] < =
PAD a

(SEQUENCING) (REPETITION) (SELECTION)

=]

Flowchart |I|

O

n

Fig. 1.8.1 Three basic program structures.

q: =0 r:=x .
r:o=x inv P:0<r~0<y" q*y+r=x
____________ bound t:r

inv P: 0<r~0<y~g*y+r=x
bound t:r

y [r:i=r—y
. — r= .
r>y r.=r—y <y q.:q+1

q:=q+1 n

——————————— «[R : 0sr<y"q“y+r—_-x

R:0<r<y~q*y+r=x

Fig. 1.8.2 Example PAD and equivalent flowchart. These both compute quotient q and remainder r for x/y
(Sentences outside PAD are comments).

98

Y. FUTAMURA, T. KAWAI

This is evidence for the statement that the relationships between basic structures used in
flowcharts are hardly visible. Another conclusion from this example is that identical computa-
tions can be described in completely different looking diagrams. Styles of diagrams tend to de-
pend on the programmers who draw them.

In PAD on the contrary, relationships between basic diagrams are very clear and the
computation of Fig. 1.8.3 can be uniquely described as Fig. 1.8.4. Therefore we may assert
that:

Fig. 1.8.3 Relationship between basic structures are not visible in flowcharts.

2]

m—jﬁ—j B
E 9

Fig. 1.8.4 Program structure is visible in PAD.

Basic structures DO 1
2
® : NE y
4
@[Dbo a n y
5
H
n 6 y
® NC
y
T]s 8 7
9
10

Fig. 1.8.5 Example NS chart.
99

PROBLEM ANALYSIS DIAGRAM (PAD)

(1) Program structures are more visible in PAD than in flowcharts; and
(2) Personal differences in diagramming style are less with PAD than with flowchart.
Figure 1.8.5 shows an NS chart equivalence of the PAD in Fig. 1.8.4. NS chart can
claim the above two points against flowcharts as PAD. However, since NS chart is a nesting of
rectangles, the correction of the chart is not very easy.
Figure 1.8.6 shows the PDL equivalence of the PAD in Fig. 1.8.4. Basic structures are
less easily visible in PDL than in PAD. The fact that PAD is more readable than PDL was

reported in.'>

DO WHILE 1
2
IF 3 THEN
IF 4 THEN
5
IF 6 THEN 7
BELSE 8
ENDIF
9
ENDIF
ENDIF
ENDDO
10

Fig. 1.8.6 Example pseudo-code.

1.8.3 Basic PAD Diagrams
Using only three basic structures, any computation can, in principle, be described.
However, it is more practical to add other structures so that programs can be more easily
describable and readable. Additions to PAD include problem-oriented loops and parallel
processing.

Process

A rectangle stands for a process. A process name or various statements can be written
in the frame. This rectangle can be replaced by any PAD or ISO flowchart symbol so long as
PAD symbols are not contradicted.

Sequencing

0]

g

Sn

d

100

Y. FUTAMURA, T. KAWAI

This diagram means that n (n > 1) processes, S1, S2,..., Sn, are performed in the specified
order.

Repetition

There are two kinds of repetition diagrams.
(1) Pre-judgement loop:

IDEE

This diagram stands for the following repetition process:

<D

Here, Q stands for a Boolean expression and S stands for an arbitrary process.

(2) Problem-oriented loop:
There are many occasions when using only pre-judgement loops are not convenient for
describing a procedure. For example, the below PAD illustrates a procedure for repeating a
process, S, with variable I varying from M to N by K.

I=M

I

A problem-oriented loop however, permits the writing of the below PAD for the same
procedure as the above.

|I=M,N,K|H s| or [|:=MT0NBYKJ]—-[s |

That is, the diagram permits description of any starting and ending condition for a
loop, and the value of a control variable in frame [__]] . However, when only a Boolean ex-
pression (say Q) is written in a frame, such that

this signifies a post-judgement loop:

101

PROBLEM ANALYSIS DIAGRAM (PAD)

H
(>

Remark) Note that we restrict the use of frame [__J} for a problem-oriented loop. It does
not provide any definition of the expressions inside a frame except for a Boolean expression,
ie., . Therefore, whenever a new problem-oriented loop is used, its meaning must be
defined explicitly, e.g. using Tables 1.8.1 and 1.8.2 shown in Section 1.8.4.

Selection

This diagram represents the selection of one out of n (n > 1) processes, S1, S2,..., Sn, in
accordance with n conditions Q1, Q2,..., Qn. When Qn=(Q1 V Q2 v ... vQn-1),i.e. Qn
means “otherwise”, this Qn may be omitted (here, “ v” stands for “logical or” and “—”
stands for negation).

Remark 1) If Qi Qj = false for alli, j (1<i, j <n, i#)), i.e. if the conditions are exclusive,
this diagram is equivalent to the following flowchart (Here, “ ~” stands for “logical and”).

102

Y. FUTAMURA, T. KAWAI

Remark 2) If Qi "Qj=true for some i, j (1 =i, j=n, i#]), i.e. if conditions are inclusive,

then the selection is non-deterministic, i.e. the selection of either Si or Sj is not determined.
Remark 3) The following two diagrams are equivalent:

(PAD>

Initialization
= then reset

FIRST =K(1) then if K(l)is SECOND
SECOND=0 greater than and FIRST

For | equals to If K(l)is greater ~ FIRST SECOND=FIRST

2 to N than SECOND FIRST =K({l)

=2 toN —{kiy>seconnd |K!">FIRST

’SECONDz K(l)l

else reset SECOND

<Flowchart> START

FIRST =K(1)
SECOND=0

SECOND—FIRST
FIRST = K{(l) SECOND=K()

I=i+1 |

Y

Fig. 1.8.7 Greatest integers problem. [after Y. Futamura et al.”)]

103

PROBLEM ANALYSIS DIAGRAM (PAD)

Remark 4) Elimination rule: When a process frame is empty, the frame and its branch (left
side horizontal line) may be eliminated. For example:

o8 =
[a+0 == [e]

Remark 5) Commenting rule: Sentences outside PAD frames may be considered

comments.
[Example 1] There are N different positive integers K(1), K(2),...,K(N), where N> 1. Find
the largest (FIRST) and second largest (SECOND) of the given integers (Fig. 1.8.7).

Parallel (Figs. 1.8.8 and 1.8.9.)

S1
s2 L
S1 S2{ "+ |Sn
Sn
J
J
(PAD> ¢(Flowchart>

Fig. 1.8.8 Parallel diagram. These diagrams mean that processes S1, S2, ..., Sn run parallel, and that after all are
completed, process J starts to run.

!Hmt#=|=1,g S1=S1+A()*B() |
0

[Last |
L___I_J:E+LN+—432=sz+meBuﬂ
S=S1+S2 |

Fig. 1.8.9 Computation of inner product of A and B using two processors. [after Y. Futamura et al.”)]

Definition
dif or =

104

Y. FUTAMURA, T. KAWAI

[s]=raD

These symbols are used when a name (say S) is given to a PAD:

PAD

[s]=

(See Figs. 1.8.10 and 1.8.11).

r <
IHZI
(b)

NAME A I
(a)
Fig. 1.8.10 Example for d¢f _ [after Y. Futamura et al. 7]

INITIATE
READ

—
CALCULATE

def

END

REPORT
GENERATOR

GENERATE

TERMINATE

CLOSE

END

Fig. 1.8.11 PAD using flowchart symbols

1.8.4 Coding Method Based on PAD
The previous chapter established PAD diagramming rules. However, without specify-
ing the exact meanings of conditions and statements written in frames, the exact meaning of a

procedure described by PAD cannot be specified either. That is, it is impossible to code pro-
105

grams from PAD until the semantics of the language to be used in the PAD frames is specified

PROBLEM ANALYSIS DIAGRAM (PAD)

Table 1.8.1 Recommended PAD diagrams (PASCAL). [after Y. Futamura et al.”]

PAD PASCAL Flowchart
U
N
T until Q H repeat H until Q;
, A]
L
I
| | while @ J—{ H | while Q do H;
L
E
R
E
P
E
1
T
| 8 |—mton“—|H| for i: =m ton do H;
0
N
0
V,\Y i: =m downto n for i: =mdownto n do H;
T
0]
FE
L
E S Q If Q then H1 else H2
N
s| ¢ a
E Q
L T If Q then H; m
E| H Q
c E
T N
|
0
N
8 8 case i of
M L1 .
L1 :H1,;
U 0 L2, -
E = ' Ln: Hn
Ln
D end ;

106

Y. FUTAMURA,

T. KAWAI

Table 1.8.2 Recommended PAD diagram (FORTRAN, PL/I, COBOL). [after Y. Futamura et al.n]

PAD FORTRAN PL/I COBOL
g © L ﬁONTINUE DO UNTIL Q; ﬁﬁﬁiggm H UNTILQ
H; .
'SI' ml IF (Q) GOTO L { END- (H is a paragraph
’ name)
E © L CONTINUE DO WHILE Q; | PERFORM H UNTIL
p IF (Q) THEN ;
5| & Lo y H: (NOT Q)
ElE GOTO L END;
, ENDIF
H PO
(l) PO DO I—M TO |PERFORM H VARY-
Njol DO L I=M N K N BY K;| ING |
— H H. FROM M BY K
E# |=M.NK]| L CONTINUE END. UNTIL I>N.
ME| ©
D
I E
; g a H1 ELSE H2; H1.
ELSE ELSE
E H2 H2.
N ENDIF
A
T { H | 'HF (Q) THEN IF Q THEN H;| JF Q THEN H,
E @ g ENDIF
N
E 1F(e)L1,L2,L3
CIA L1 CONTINUE
E '? H1
Clt GO TO L4
Tlh L2 CONTINUE
I v F H2
8 E GO TO L4
T L3 CONTINUE
| H3
c L4 CONTINUE
GO TOL1,L2, |op ket " GO TO tle
88 “nLn) T PWHEN (1) HY PEND
MT L1 CONTINUE |WHEN (2) H2;| DEPENDING ON 1.
PO H1 : L1. H1.
¥ GO TO L : GO TO L.
D Hn END; L.
L CONTINUE ’
% Note : Q stands for negation of Q. O is written

in the coding phase if necessary,

107

PROBLEM ANALYSIS DIAGRAM (PAD)

Therefore, it is very convenient for practical use of PAD to prepare such tables as are shown in
Tables 1.8.1 and 1.8.2, so as to clarify the correspondence between PAD and the program-
ing languages.
Using the tables, coding from PAD can be systematically performed based on the “tree
walk” rules described below,
(1) Asisshown in Fig. 1.8.12, O is added to the PAD at the necessary locations specified
in Table 1.8.2.

FIRST =K(1)
SECOND=0

1=2 to N[k()>seconp <

—

SECOND
=FIRST

< FIRST =K(l)
K(l) >FIRST
[seconD=k() |

Fig. 1.8.12 Example of a tree-walk and numbering.

(2) With PAD considered a tree, a “tree walk” is performed, as shown in Fig. 1.8.12. Suc-
cessive multiples of ten are filled into (O , in the order encountered on the tree walk.
Then statements are made one by one in the tree walk order, using the following rules:
(1) When a processing “leaf”, H, is met, the statements are copied.
(2) When a label like is encountered, a statement number such as 100 CONTINUE
for FORTRAN or 100 REM for BASIC is written; and
(3) When [T J) or [_X isencountered, IF, DO or GOTO are written according
to patterns specified in Table 1.8.2.
The program is completed when the tree walk ends. The resulting program in, for ex-
ample, FORTRAN, has statement numbers arranged in order (Fig. 1.8.13).
Coding into PASCAL, PL/I or COBOL is done similarly, but more easily, using
Tables 1.8.1 and 1.8.2. Coding into lower level languages, such as assembler, can be done us-
ing prepared conversion tables like Tables 1.8.1 and 1.8.2.

FIRST =
SECOND
DO10I =2 N
IF (K (I). GT. SECOND) THEN
IF (K (I). GT. FIRST) THEN

SECOND = FIRST

FIRST = X (I)

ELSE

SECOND = K (I)

ENDIF

ENDIF
10 CONTINUE

K (1)
=0

Fig. 1.8.13 FORTRAN program for greatest integers problem.

108

Y. FUTAMURA, T. KAWAI

1.8.5 Testing Method Based on PAD
All-branch testing can be performed by passing through all leaves of a PAD tree. Pro-
gram correctness is not necessarily guaranteed even if a program has passed this test. Still, it is
a necessary, though not sufficient, test. PAD is a convenient instrument for systematically per-
forming such tests as will be demonstrated below.
[Problem] The PAD in Fig. 1.8.14 shows a procedure for sorting A(1), A(2), ..., A(L) in
ascending or descending order for k=1 or k % 1 respectively. The test data for an all-branch
test must be prepared.

10 30
Print error message I M=I

L<O
Search for smallest (or

20 largest)element in A(l),

= AL, J=I1+1to Ll}_

Then exchange A(l} and A(M)

80
W =A(l)

A(l)y=A(M)

RETURN |9° AM)=W

Fig. 1.8.14 PAD for sorting A(1),..., A(L). [after Y. Futamaura et al.”]

The PAD for the sort program is shown in Fig. 1.8.14. The leaves in the tree (9 in all)
are numbered from 10 to 90. Note that the empty leaves (20, 50, 70) are also numbered.

Test input was prepared in the form of Table 1.8.3, and the procedure is as follows.
First a set of data is chosen arbitrarily. The data set determines the control flow and leaves to
be covered. The remaining uncovered blocks are marked in a separate column in the table.
Then, another set of test data is devised to cover as many uncovered leaves as possible. This
step is repeated until all leaves have been covered. In the example, 4 sets of input data were
used for the all-branch testing.

Table 1.8.3 Test case table. [after Y. Futamura et al.”)]

No Test cases Checked Remaining Date of check
) Input data Correct output blocks blocks on desk on machine

K=1,L=3, _ _

U a7 AD=5. M@ =7, 204050, | 060 | o
A(2)=9, A(3)=5 ’
K=2,L=3, _ -

2 [A()=7 28; =2 A@=T 130,670 | 10,20 6/25/19
A(2)=9, A(3)=5 ’
K=1,L=1, _

3 A()=7 A()=7 20, 90 10 6/25/79

4 |L=0 Error message 10 none 6/25/79

109

PROBLEM ANALYSIS DIAGRAM (PAD)

1.8.6 Describing Data Structure in PAD
The data structure can be described by employing the same method used to describe
control structures through taking advantage of sequence, repetition and selection.
(1) Basic diagram for repetition
N data of type D can be described as

N can be omitted if the number is unknown.

CODE

PERSONNEL | NAME CODE

e = |
FILE

long-service

allowance

supervisor

ENEIERE

Fig. 1.8.15 Data structure example. [after Y. Futamura et al.”)]

Table 1.8.4 Comparison of PAD and Jackson tree. [after Y. Futamura et al.”)]

’\ PAD Jackson
| A I

&]
any | A=<] m/rc }

Repetition —-l B

Selection

110

Y. FUTAMURA, T. KAWAI

(2) Basic diagram for selection
A datum of type D1, D2,... or Dn can be described in the following manner,

conditions

An example of a data structure written in PAD is shown in Fig. 1.8.15. A two dimen-
sional N x N array A(I,J) can be described using problem-oriented loops as follows:

A-=n - Ao

It is known that data structure can be useful as a guide to the program structure for
processing that data. Use of PAD makes it possible to design programs based on data struc-
ture, just as with Warnier’s or Jackson’s methods.!” The correspondence between the PAD
data representation method and Jackson’s method is shown in Table 1.8.4

1.8.7 Extended Diagrams
Four kinds of diagrams are introduced to concisely represent commonly used process
patterns in program development. Note that they can in principle be described in basic PAD.

Mid-judgement loop (Table 1.8.5)
Table 1.8.5 Mid-judgement loop. [after Y. Futamura et al.”}]

PAD Flowchart PASCAL FORTRAN
@ L :S; L CONTINUE
— s | if 5 then s
E] begin IF (P) THEN
T; T
goto L GOTO L
end ; ENDIF

Selective loop

[

Q1

Q2

111

PROBLEM ANALYSIS DIAGRAM (PAD)

This diagram stands for the following process,

fatvazv.. van |—

Infinite loop

This diagram stands for the following process,

Note that this is a type of problem-oriented loop.
Restricted GOTO

Three kinds of forward jumps are allowed in and out of a loop, and from one PAD
branch to another without entering or leaving a loop. These are ENTER, EXIT and MERGE.

Table 1.8.6 Restricted GOTO (forward jump). [after Y. Futamura et al.”]

Form Function Example

ENTER @| [51]
Control is transferred to)
ENTER©D (D inside a loop from UNTIL P
the outside. @

Control is transferred to [UNTIL P"—
EXITO (O outside a loop from ©

[s1]
XY
the inside. ﬂl
[51]

Control is transferred 7 MER_GEC’
MERGE (D) to a branch (D without M<2 2]

going in or out of

any loops. 3 gﬂ

112

Y. FUTAMURA, T. KAWAI

Their meanings and example uses are shown in Table 1.8.6. They should be used carefully,
because they tend to spoil PAD readability.

1.8.8 PAD Effectiveness

Though a quantitative evaluation of the PAD effectiveness is now being conducted,
programmers have already been polled as to their evaluation of PAD with regard to produc-
tivity. It is important for a new notation to give a “good feeling” to its users in order for it to
be accepted quickly. Thus PAD users were asked “How much do you feel PAD improves your
program productivity ? ” two weeks for three months. Programmers responded by providing
information about the development stage they were in and the productivity improvement ratio
they felt. If they felt that their productivity was doubled, the ratio they responded with was 2.
The programmers had been using HIPO and flowcharts before they used PAD, and the
languages included PL/I, FORTRAN and assembly language.

Investigations were conducted at two different institutions. One was our own
laboratory, where programmers could be helped in solving problems in writing PAD (there
were 12 subjects from 6 projects). Results are shown in Table 1.8.7 (a). The other was one of
our plants where there was no contact with the programmers (there were 36 subjects from 14
projects). The results are shown in Table 1.8.7 (b). The reason for such low scores as 0.5 and
0.7 in the table, is misuse of PAD. An example of this is the drawing and maintaining both
PAD and flowcharts.

Table 1.8.7 Evaluation of PAD. [after Y. Futamura et al.”]
(@) ®)

Development | Productivity Improvement Ratio Development| Productivity Improvement Ratio
Phase Average |High score |Low score Phase Average | High score |Low score
Fun_ctional 1.5 5 1 Funptional 1.4 5 1
Design Design
Logical 1.6 3 1 Logical 1.2 2 0.5
Design Design
Test Case Test Case

. . 1.1 . 1.3 2 0.5
Analysis 1.9 2.5 Analysis
Coding 2 3 1.3 Coding 1.7 2 13
Test 2.6 3 1 Test 1.8 4 1
Correction/ Correction/

. 1 1.2 2 0.7
Change 1.4 2 Change

Since its announcement in August 1979, PAD has been accepted very rapidly among
Japanese programmers. We estimate the number of present PAD programmers to be more
than 10 000. This estimation is based on the fact that the total number of PAD templates sold
exceeded 5 000 in May, 1983. The template has been sold at a price of about $6.00 since 1980.
Because of PAD simplicity, only a certain portion of PAD programmers use the templates.
The other programmers get by with conventional templates or rulers. Therefore, our estima-
tion is not an overestimation.

113

PROBLEM ANALYSIS DIAGRAM (PAD)

1.8.9 Activities Related to PAD
(1) ISO is now discussing PAD for use as one of the substitutes for the ISO flowchart.'?
(2) Many companies and research organizations, such as Hitachi,'® Fujitsu,?" University
of Tokyo,' Keio University,”” and so on, have implemented PAD tools. These
include:
(i) A PAD compiler for translating PAD to a source language.
(ii) A PAD editor for inputting, correcting and writing PAD.
(iii) A PAD generator for assisting programmers in developing PAD (i.e. an interactive
computer assisted program development system).
Some of these tools are still being improved. Therefore, we believe many PAD pro-
grammers will be benefitting from these tools soon.
(3) We have developed a PAD design methodology called PAM (Problem Analysis
Method).® PAM has up to now been taught to more than 500 programmers, and its ef-
fectiveness and problems are currently being investigated.

1.8.10 Conclusion

Generally, new programming notations gain slow acceptance. However, PAD seems to
be gaining in popularity very quickly. Since the announcement of PAD in August 1979, at
least 10000 Japanese programmers have converted from conventional charts to PAD. Several
institutions have also adopted PAD as their standard charts.

Although a quantitative evaluation of PAD has yet to be finished, it is felt that the
speed of acceptance by programmers is indicative of PAD’s effectiveness.

Many researchers throughout the world are conducting research on representing pro-
gram structures by tree diagrams.* =!8 Programmers are finding usefulness in tree diagrams.
Therefore, a program tree diagram like PAD should be widely accepted in the near future.

References
1) Caine, S.H. and Gordon, E.X.: “PDL—a programming”, Proc. of National Con-
tool for software design”, Proc. of the 1975 ference of Inst. Electronics Comm. Engrs.
National Computer Conference, Vol. 44 Japan (March, 1978) [in Japanese].
(Montvale, N.J., AFIPS Press, 1975) 6) Futamura. Y, Kawai, T. and Tsutsumi, M.:
271-276. “Design and implementation of programs
2) Chapin, N.: “New format for flowcharts, by Problem Analysis Diagram (PAD)”,
Software—Practice and Experience”, 4, 4 Proc. of National Conference of Informa-
(1974) 341-357. tion Processing Society of Japan (July,
3) Dahl, O., Dijkstra, E.W. and Hoare, 1979) [in Japanese].
C.A.R.: “Structured Programming”, 7) Futamura, Y., Kawai, T., Tsutsumi, M and
(Academic Press, 1972). Horikoshi, H.: “Development of computer
4) Ferstl, O.: “Flowcharting by stepwise programs by Problem Analysis Diagram
refinement”, SIGPLAN Notices, 13, 1 (PAD)”, Proc. of 5th International Con-
(January, 1978) 34-42. ference on Software Engineering (New

5) Futamura, Y.: “An approach to structured York, IEEE Computer Society, 1981)
114

8)

9

10)
11)
12)

13)

14)

15)

16)

17)

Y. FUTAMURA, T. KAWAI

325-332.

Futamura, Y.: “Program design and review
through Problem Analysis Method
(PAM)”, Journal of Information Process-
ing, 23, 4 (July, 1982) [in Japanese].
Goldstein, H.H. and von Neumann:
“Planning and coding problems for an elec-
tronic computing instrument, part I1”, in
von Neumann Collected Works Vol. V
(McMillan, New York) 80-151.

ISO/TC 97/SC 7 N307 (1983).

Jackson, M.A.: “Principles of Program
Design” (Academic Press, 1975).

Jensen, K. and Wirth, N.: “PASCAL User
Manual and Report” (Springer-Verlag,
1974).

Maezawa, H., Saito, K., Kobayashi, M.
and Futamura, Y.: “Support system for
structured program production — PDL/
PAD”, Proc. of Feedback ’82 (Ken Orr
and Associates, Inc., Topeka, Kansas,
1982).

Nassi, I. and Shneiderman, B.: “Flowchart
techniques for structured programming”,
SIGPLAN Notices, 8 (August, 1974) 12-26.
Odaki, F., Maezawa, H. and Kawasaki, Z.:
“Readability evaluation: PDL and PAD”,
IPSJ (1983) [in Japanese].

Oohara, S., Nojima, S. and Maeda, S.: “A
proposal for tree-structuring of flow-
charts”, Proc. of National Conference of
Inst. Electronics Comm. Engrs. Japan
(March, 1979) [in Japanese].

Peters, L.: “Software Design: Methods and
Techniques”(Yourdon Press, 1981).

115

18)

19)

20)

21)

22)

23)

24)

25)

26)

Sato, T. and Asami, H.: “A proposal for a
hierarchical representation of flowcharts”,
Proc. of National Conference of IPSJ
(July, 1979)[in Japanese].

Shimada, K., Fujita, A., Tanaka, H. and
Moto-oka, T.: “Graphical program input
system”, Proc. of National Conference of
IPSJ (October, 1981)[in Japanese].
Shneiderman, B., Mayer, R., McKay, D.
and Heller, P.: “Experimental investiga-
tions of the utility of detailed flowcharts in
programming”, Commun. ACM, 20, 6
(1977) 373-381.

Sugimoto, M.: “Software diagram descrip-
tion”, in this volume.

Suzuki, R., Okada, K., Yokoyama, M. and
Kitagawa, S.: “Multi-screen PAD terminal
for a micro-computer”, Proc. of National
Conference of IPSJ (March, 1983) [in
Japanese].

Verdegraal, P.A. and Goodman, A.S.:
“The Warnier-Orr diagram”, Digest of
Papers, COMPCON 79, IEEE catalog,
No. 79, CHI1393-8¢ (1979) 301-306.
Warnier, J.D. and Flanagan, B.: “Entrain-
ment de la Construction des Programmes”,
d’Informatique, Vol.I and IT (Les Editions
d’Organization, Paris, 1972).

Wirth, N.: “Systematic Programming: An
Introduction” (Prentice-Hall, 1973).
Yaku, T. and Futatsugi, A.: “Tree-
structured notations for flowcharting”,
Inst. Electronics Comm. Engrs. Japan
(1978) [in Japanese].

