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ABSTRACT 
This paper shows that Generalized Partial Computation (GPC) 
can automatically generate efficient string matching algorithms. 
GPC is a program transformation method utilizing partial 
information about input data and auxiliary functions as well as the 
logical structure of a source program. GPC uses both a classical 
partial evaluator and an inference engine such as a theorem prover 
to optimize programs. First, we show that a Boyer-Moore (BM) 
type pattern matcher without the bad-character heuristic can be 
generated from a simple non-linear backward matcher by GPC. 
This sort of problems has already been discussed in the literature 
using offline partial evaluators. However, there was no proof that 
every generated matcher runs in the same way as the BM. In this 
paper we prove that the problem can be solved starting from a 
simple non-linear pattern matcher as a source program. We also 
prove that a Knuth-Morris-Pratt (KMP) type linear string matcher 
can be generated from a naive non-linear forward matcher by 
GPC.  

Categories and Subject Descriptors 
I.2.2 [Programming Techniques]: Automatic Programming – 
program transformation; F.3.2 [Logics and Meaning of 
Programs]: Semantics of Programming Languages – partial 
evaluation. 

General Terms 
Algorithms 

Keywords 
automatic program generation, Boyer-Moore pattern matcher, 
Knuth-Morris-Pratt pattern matcher,  naive pattern matcher 

 

1. INTRODUCTION 
Efficient algorithms are difficult to develop while inefficient ones 
are easy. This paper shows that some efficient algorithms can be 
automatically generated from inefficient ones. Automatic 
generation of an efficient pattern matcher from a naive one, 
introduced in [7], is a typical problem for partial evaluation 
[1,2,5,10,14]. Let m be the length of a given pattern and n be the 
length of a given text. Then the problem can be classified as two 
problems: 

Type 1: Can we generate an O(n) pattern matcher of size O(m) 
             from a  naive  non-linear matcher and a given pattern? 

Type 2: Can we generate an O(m) algorithm from a given   
            matcher that generates an O(n) pattern matcher of  
            size O(m) from a given pattern? 

The problems can be rephrased in partial evaluation terms. Let α, 
pm, t and p be a partial evaluator, pattern matcher, text and 
pattern, respectively. Let the residual program of x with respect to 
y be xy i.e. xy=α(x,y). Then we can redefine the above problems 
as follows: 

Type 1: Does pmp(t) run in O(n) time for any t and is pmp of size  
             O(m)? 

Type 2: Does αpm(p)(t) run in O(m+n) time for any p and t? And 
             is  αpm(p) of size O(m)? 1 

Apparently, Type 2 problem is more difficult than Type 1 and has 
never been solved by partial evaluation to the best of authors' 
knowledge. This paper deals with Type 1 problem and reports that, 
by Generalized Partial Computation (GPC) [8,9], we can generate 
(1) a Boyer-Moore (BM) type pattern matcher [3] without the 
bad-character heuristic (the delta1 table in [3]; see Appendix 1) 
from a non-linear backward matcher and (2) a Knuth-Morris-Pratt 
(KMP) matcher from a non-linear forward matcher. Generation of 
a BM type matcher has been discussed in [2] using off-line partial 
evaluator. However, there was no proof that every generated 
matcher runs in the same way as the BM matcher. Here we will 
show that the problem can be solved starting from a simple non-
linear pattern matcher as a source program by on-line partial 
evaluator. We also prove that every generated matcher runs 

                                                                 
1  On leave from DIKU, Dept. of Computer Science, University of 

Copenhagen. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
ASIA-PEPM’02, September 12-14, 2002, Aizu, Japan. 
Copyright 2002 ACM 1-58113-458-4/02/0009…$5.00.  
 



 

 2

exactly the same way as the BM. Generation of KMP matchers by 
offline partial evaluator with a correctness proof has been 
discussed in [1]. Here, we start from a simpler source program 
than [1] by using online partial evaluator. Appendix 1 explains the 
BM algorithm following the presentation in [6]. There are many 
variations of the BM and KMP algorithms. We define (1) a BM 
matcher as an O(n) time and O(m) size pattern matcher which 
utilizes the good suffix in Appendix 1 and (2) a KMP matcher as 
an O(n) time and O(m) size pattern matcher which utilizes the 
longest matching prefix (LMP) in Fig. 2. This paper assumes that 
readers are familiar with program transformation [13] and partial 
evaluation [11]. 

2. NAIVE BACKWARD MATCHER  
Let a given pattern be p=a0a1...am-1 and a given text be t=t0t1...tn-1. 
Then the shortest unmatching suffix (SUS) of p with respect to t is 
ak-1ak...am-1 where ak-1≠tk-1 and either (1) aj=tj for 0<k≤j≤m-1 or 
(2) k-1=m-1 (Fig.1). We say ak...am-1 is the good suffix and tk-1 is 
the bad character. A prefix of p is a0...am-1-i for 0≤i≤m. The longest 
matching prefix (LMP) of pattern p with respect to t is the longest 
prefix a0...am-1-r such that a0=tr,...,am-1-r=tm-1 for 0≤r≤m (Fig.1). 

 
text:  t0 ... tk-1 tk ... tm-1 ...tn-1 
   ≠ = ... =  
SUS:   ak-1 ak ... am-1  
 
text: to   tr  tm-1 ...tn-1 
    =  =  
LMP:     a0 ... am-1-r  
prefix i:  a0 ...   am-1-i  

 

 

We define a generic pattern matcher gmi(p,t). The matcher returns 
true if pattern p is found in text t; false otherwise. The matcher is 
parameterized with respect to a slide function slide#i(p,t). The 
matcher can be controlled by different slide functions. When 
slide#i finds a match, it returns 0 and gmi returns true. If the slide 
function finds a mismatch, the matcher slides the pattern 
slide#i(p,t) characters to the right and repeats the comparison.  

gmi(p,t)≡if null(p) then true  
    else if length(t)<length(p) then false 
    else (λj.if j=0 then true else gmi(p,nthcdr(j,t)))     
           (slide#i(p,t)) 

We use four primitive functions: last(p,k) returns the last k 
elements in p; when k is omitted, the default value is 1. 
butlast(p,k) returns a copy of list p without the last k elements; 
when k is omitted, the default value is 1. nthcdr(k,t) is equivalent 
to calling cdr k times in succession with t as the initial argument. 
nth(k,p) returns k-th element of a list p. Note that the first element 
of p is nth(0,p). 

A naive slide function compares p against t backward from tm-1 to 
t0 and returns 1 when it finds a bad character. Pattern matcher 
gm1 uses slide#1. 

slide#1(p,t)≡if null(p) then 0 
    else if matchlast(p,t) then slide#1(butlast(p),t) else 1 
where matchlast(p,t)≡(car(last(p))=nth(length(p)-1,t)) 

2.1 SPECIALIZATION OF THE MATCHER 
Specializing gm1 with respect to a pattern, for example [A A B], 
our GPC system just unfolds the source program and does not 
improve the residual program significantly.  

Another naive matcher, readers may think, is bm(p,pat,tex) below 
where gm1(pat,tex)=bm(pat,pat,tex):   

bm(p,pat,tex)≡if null(pat) then true  
    else if length(tex)<length(pat) then false  
    else if null(p) then true 
    else if matchlast(p,tex) then bm(butlast(p),pat,tex) 
    else bm(pat,pat,cdr(tex)) 

Although gm1 and bm look different, bm can be derived 
systematically from gm1 (see Appendix 2 for the derivation). Our 
GPC system does not generate an efficient residual program when 
specializing bm with respect to a pattern, either. Therefore, we 
have to use a little more sophisticated slide function slide#2.  

Instead of moving down the text by 1 in case of a mismatch, 
slide#2 below searches for LMP of p with respect to t. Its value is 
the distance we must slide pattern p to align the discovered LMP 
with its counter part in t. If the LMP is a0...am-1-r in Fig.1, 
slide#2(p,t)=r for 0≤r≤m.  

slide#2(p,t)≡loop2(p,p,t) 

loop2(p,pat,t)≡if null(p) then 0 
    else if matchlast(p,t) then loop2(butlast(p),pat,t)   
    else slide#2(butlast(pat),cdr(t))+1  

It is not difficult to see that function gm2 is a correct pattern 
matcher whose complexity is at least O(mn). For example, it takes  
km(m-1)/2 comparisons to check a pattern ABm-1 against a text 
Bkm.  

Examples: LMP’s are shaded in both patterns and texts. 

(1) slide#2([A A B],[C A A ...])=1 
(2) slide#2 ([ B A A], [A A A ...])=3 
(3) slide#2([A B C X X X A B C], [Z B C X X X A B C ...])=6 
(4) slide#2([A B C X X X A B C], [A B C X X X A Z C ...])=9 
(5) slide#2([A B Y X C D E Y X], [A Z Y X C D E Y X ...])=9 
(6) slide#2([A B Y X C D E Y X], [A B Y X C A B Y X ...])=5 

 GPC system generates a non-linear matcher when specializing 
slide#2 with respect to some pattern including [A A B]. For 
example, the residual program slide#2 with respect to [A A B]: 

slide#2[A A B](t)≡ 
    if B = nth(2, t) 
    then if A = nth(1, t) 
          then if A = nth(0, t) then 0 else 3 
          else 3 
    else if A = nth(2, t) 
          then if A = nth(1, t) then 1 else 2 
          else 3 

This program runs O(mn) for such a text as AA...A where m=3 in 
this case. The reason is that after a mismatch with B, two 

Figure 1. SUS (Shortest Unmatching Suffix) and LMP 
(Longest Matching Prefix) of a pattern a0a1...am-1. 
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successful comparisions with A slide the pattern only by 1. If the 
else part if B = nth(2, t) of slide#2[A A B] could be just 1 instead of  

else if A = nth(2, t) 
          then if A = nth(1, t) then 1 else 2 
          else 3 
then the residual program could be O(n). This means that the GPC 
system conducts too much job at the partial evaluation time. This 
is a commission error [9]. 

2.2 EASING RULES  
To avoid this sort of commission errors, we use the following two 
easing rules of character matching in slide#2:  

 (1-1) ak-1 matches any character in p except ak-1. 

(1-2) Every character of text to the left of ak-1 matches any   
          character in pattern p.  

We use if1 expression  to implement the easing idea and define 
new function slide#3 based on slide#2. Here, if1 expression is 
used in a context such as if1 p(u) then e1 else e0. The meaning of 
if1 is the same as if in (1) total evaluation or (2) partial evaluation 
and p(u) is provable or refutable. However, when p(u) is neither 
provable nor refutable, the residual program is the residual 
program of e1. See Appendix 3 for more details about conditional 
expressions for GPC. 

slide#3(p,t)≡loop3(p,p,t) 

loop3(p,pat,t)≡if null(p) then 0 
    else if matchlast(p,t) then loop3(butlast(p),pat,t)  
    else slide#4(butlast(pat),cdr(t))+1  

slide#4(p,t)≡loop4(p,p,t) 

loop4(p,pat,t)≡if null(p) then 0 
    else if1 matchlast(p,t) then loop4(butlast(p),pat,t)  
    else slide#4(butlast(pat),cdr(t))+1  

If p and t are known, then slide#2(p,t)=slide#3(p,t)=slide#4(p,t). 
This use of if1 expression in slide#4 relaxes the matching 
criterion of characters and decreases the value of slide#2. Note 
that, for k=1,...,m and m-k+1≤j≤m, the value of slide#4a0a1...aj-2 (tm-

j+1...ak-1ak...am-1...) can be computed without knowing the value of 
t. Therefore, the residual code for expression 
slide#4(butlast(pat),cdr(t))+1 will always be a value j itself for 
which 1≤j≤slide#2(butlast(pat),cdr(t))+1. Therefore, it is safe to 
slide a pattern for j. This means that the conditional if1 in slide#4 
does not spoil the correctness of the residual programs in this case. 

For example, the residual program slide#3[A A B] below takes 1 for 
text [X Y Z ...] (i.e. slide#3[A A B] ([X Y Z ...])=1) while 
slide#2( [A A B],[X Y Z ...])=3. (This inequality does not happen 
for the pattern and text combinations in the examples above).  

When we specialize slide#3 with respect to pattern [A A B], the 
GPC system generates the following residual program.  

slide#3[A A B](t)≡if B= nth(2, t) 
    then if A=nth(1, t) 
            then if A=nth(0, t) then 0 else 3 
            else 3 
    else 1  

The residual matcher with slide#3[A A B] runs in O(n).  

For short, we refer this program as 3,3,1. Table 1 shows more 
residual programs with generation time by our GPC system for 
example patterns. If we conduct GPC manually, we can get 
Property 1 below. 

Property 1: Residual program of slide#3 with respect to 
p=a0a1...am-1 for m>0 is:  

slide#3a0a1...am-1( t)≡ if am-1= nth(m-1, t) 
      then if am-2=nth(m-2, t) 
       ...  
         then if a1= nth(1, t) then 0 
            then if a0= nth(0, t) then 0 
            else slide#4a0a1...am-2(a1a2...am-1 ...)+1  
         else slide#4a0a1...am-2(a1a2...am-1 ...)+1 
        ... 
      else slide#4a0a1...am-2(t1...tm-3am-2am-1 ...)+1 
else slide#4a0a1...am-2(t1...tm-2am-1 ...)+1 

We abbreviate the residual program by writing the following 
sequence of numbers:  
slide#3a0a1...am-1(t)≡ slide#4a0a1...am-2 (a1a1...am-1 ...)+1,..., 
                             slide#4a0a1...am-2 (t1...tm-2am-1 ...)+1. 

Note here that each slide#4a0a1...aj-2(tm-j+1...ak-1ak...am-1...) is a 
constant. We obtain a specialized version of gm3(a0a1...am-1,t) by 
replacing call slide#3(a0a1...am-1,t) inside gm3 by call 
slide#3a0a1...am-1(t). We prove in the next section that the new 
matcher behaves in the same way as the BM matcher. In general, 
the residual program of slide#3 with respect to a pattern produced 
by GPC is equivalent to delta2 table in [3]. Thus gm3 runs exactly 
the same way as the BM without the bad-character heuristic [6]. 
See [4] for complexity discussions concerning the BM matcher.  

Table 1. Example patterns and generation time 
Machine Specification: Pentium III 650MHz, Windows 98SE, 
Allegro Common Lisp 5.0.1 

Pattern GPC 
Time 
(secs)

Number of 
Theorem 
Proving 

Residual Program 

[A A B] 6 54 3, 3, 1 

[B A A] 7 57 3, 1, 2 

[A B C X X X 
A B C] 

245 721 6, 6, 6, 6, 6, 6, 9, 9, 1

[A B Y X C D 
E Y X] 

275 808 9, 9, 9, 9, 9, 9, 5, 9, 1

3. PROOF   
First, we define a new function slide#5(p,t) which is the 
implementation of the good-suffix heuristic of the Boyer-Moore 
algorithm (Appendix 1). Then we prove slide#3p(t)=slide#5(p,t) 
for any p and t. slide#5 is not naive because it is the central idea 
of the BM algorithm. It first tries to find SUS of p with respect to 
t from the right: 
 text:  t0 ... tk-1 tk ... tm-1 tm...        tn-1 
    ≠ = ... =  
 pattern: a0 ... ak-1 ak ... am-1  
 
Then it calls find([ak-1], cdr(SUS), a0 ...am-2) to search string  
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ak-1ak ...am-1in a0 ...am-2 from the right and returns r as its value. 
See the relationship between a text and a pattern below.  
 text: t0 ... tk-1 ak ... am-1 tm...        tn-1 
 pattern:  a0... ak-1 ak ... am-1 am-r...am-1 
 
However, when cdr(SUS) is not included in a0 ...am-2 then find 
calls slide#2(a0 ...am-k-1, cdr(SUS)) to find the LMP of a0 ...am-k-1 
with respect to cdr(SUS) and returns s as its value. See the 
relationship between a text and a pattern below. 
 text: t0  tk-1 ak... a0... am-s-1 tm...        tn-1 
 pattern:     a0... am-s-1 am-s...am-1 
 
The value of find is the distance we must slide pattern p to align 
the discovered substring with its counter part in t. For example, 
find([E], [Y X], [A B Y X C D E Y ])=4 and find([B], [A A], [B 
A ])= slide#2([B A ], [A A])=2. 

slide#5(p,t)≡loop5(p,p,t,[ ]) 

loop5(p,pat,t,w)≡if null(p) then 0 
    else if matchlast(p,t) then   
               loop5(butlast(p),pat,t,append(last(p),w))   
    else find(last(p),w,butlast(pat))+1 

find(c,w,p)≡if null(p) then 0 
    else if length(w)=length(p) then slide#2(p,w)  
    else if w=last(p,length(w)) and  
               c≠last(butlast(p),length(w)) then 0 
     else find(c,w,butlast(p))+1  

For the pattern and text combinations in the examples above, 
slide#5 takes the same value as slide#2. However, slide#5([A A 
B], [X Y Z ...])=1 while slide#2([A A B], [X Y Z ...])=3. Theorem 
1 below proves that the value of slide#5 is equal or less than the 
value of slide#2.  This means that gm5 or the BM matcher is a 
correct matcher.  

Theorem 1: find([ak-1], ak...am-1, a0 ...aj-2)≤ 
slide#2(a0...aj-2, tm-j+1...ak-1ak...am-1...) for  k=1,...,m and m-k+1 
≤j≤m.  

Proof: We prove the theorem by mathematical induction on j.  

Base: If j=m-k+1 then length(ak...am-1)=length(a0...am-k-1) . 
Therefore, find([ak-1], ak...am-1, a0...am-k-1)= slide#2(a0...am-k-1, 
ak...am-1...). 

Induction Step: (1) If ak...am-1= aj+k-1-m...aj-2 and aj+k-2-m≠ak-1 then 
find([ak-1], ak...am-1, a0 ...aj-2)=0, while slide#2(a0...aj-1, 
tm-j...ak-1ak...am-1...)≥0 

(2) If there is a mismatch between ak...am-1 and aj+k-1-m...aj-2  
or aj+k-2-m=ak-1, then find([ak-1],ak...am-1,a0...aj-2)=find([ak-1], 
ak...am-1,a0...aj-3)+1≤slide#2(a0...aj-3,tm-j+2...ak-1ak...am-1...)+1 
=slide#2(a0...aj-2, tm-j+1...ak-1ak...am-1...) . Therefore, slide#5(a0...am-

1,t0...ak-1ak...am-1...)=find([ak-1],ak...am-1,a0...am-2)≤slide#2(a0...am-

1,t0...ak-1ak...am-1 ...)                                                                        ٱ 

It is easy to see that we can make delta2 table of [3] using function 
find. Note that find can be computed depending only on p. If we 
conduct GPC manually, we can get Property 2 below. 

Property 2: Residual program of slide#5 with respect to 
p=a0a1...am-1 for m>0 is:  

slide#5 a0a1...am-1 ( t)≡ if am-1= nth(m-1, t) 
        then if am-2=nth(m-2, t) 
         ... 
              then if a0= nth(0, t) then 0 
              else find([a0], a1...am-1, a0 ...am-2) 
         ... 
         else find([am-2], am-1, a0 ...am-2)+1 
    else find([am-1], nil, a0 ...am-2)+1 
≡find([a0], a1...am-1, a0 ...am-2)+1,..., find([am-1], nil, a0 ...am-2)+1. 

In order to prove that slide#3a0a1...am-1( t)=slide#5a0a1...am-1 ( t), we 
prove Theorem 2 below. 

Theorem 2: slide#4 a0a1...aj-2(tm-j+1...ak-1ak...am-1...)=find([ak-1], 
ak...am-1, a0 ...aj-2) for k=1,...,m and m-k+1≤j≤m. 

Proof: We prove the property by mathematical induction on j. 

Base: (1) If j=m-k+1then slide#4a0...aj-2(ak...am-1...)= 
slide#4(a0...am-k-1,ak...am-1...)= slide#2(a0...am-k-1,ak...am-1...)= 
slide#2(a0...aj-2, ak...am-1) and find([ak-1], ak...am-1,a0...aj-2) 
=slide#2(a0...aj-2, ak...am-1...). 

(2) If ak...am-1=aj+k-1-m...aj-2 and aj+k-2-m≠ak-1 then  
slide#4a0...aj-2(tm-j+1...ak-1ak...am-1 ...)=0 and  
find([ak-1], ak...am-1, a0 ...aj-2)=0. 

Induction Step: There is a mismatch between ak...am-1and  
aj+k-1-m...aj-2 or aj+k-2-m=ak-1. Then find([ak-1], ak...am-1, a0 ...aj-2) 
=find([ak-1], ak...am-1,a0...aj-3)+1= 
slide#4a0...aj-3(tm-j+2...ak-1ak...am-1...)+1=  
slide#4a0...aj-2(tm-j+1...ak-1ak...am-1...).                                      ٱ 

Therefore, we can assert that gm3a0a1...am-1(t) behaves in the same 
way as the BM pattern matcher. However, it takes exponential 
time to generate a matcher by GPC because GPC includes 
theorem proving. In order to generate a BM matcher in O(m) time, 
we can self-apply GPC α such as α(α,slide#3)(pat) =α(slide#3,pat). 
Since the residual program of α(α,slide#3), i.e. αslide#3, may have 
no overhead concerning theorem proving, we expect αslide#3(pat) 
runs in O(m). The residual program will be an implementation of 
the BM algorithm. Unfortunately, we have not proved this 
assertion yet. 

4. GENERATION OF KMP MATCHER 
Let slide#6 be a naive slide function which compares p against t 
from t0 to tm-1 and returns 1 when it finds an unmatched character. 
This implements a forward pattern matcher gm6. 

slide#6(p,t)≡if null(p) then 0 
     else if matchhead(p,t) then slide#6(cdr(p),cdr(t)) else 1 
where matchhead(p,t)≡(car(p)=car(t)). 

The following naive matcher nm can be derived systematically 
from gm6 (the derivation is shown in  Appendix 4).  

nm(p,t,pat,tex) ≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if matchhead(p,t) then nm(cdr(p),cdr(t),pat,tex) 
    else nm(pat,cdr(tex),pat,cdr(tex)) 
Our GPC system [9] produces a KMP-style O(n) pattern matcher 
[12] from nm and a given pattern. For example, the residual 



 

 5

program obtained by specializing nm([A B A B C], t, [A B A B 
C], t) is N0(t): 
N0(t) ≡ if length(t)<5 then false 
           else if A = car(t) then N1(t) else M1(t) 
N1(t) ≡if B=cadr(t) then N2(t) else M2(t) 
N2(t) ≡if A=cad2r(t) then N3(t) else M3(t) 
N3(t) ≡if B=cad3r(t) then N4(t) else M4(t) 
N4(t) ≡if C=cad4r(t) then true else M5(t) 
M1(t) ≡if length(t)<6 then false else N0(cdr(t)) 
M2(t) ≡if A=cadr(t)  
           then if length(t)<6 then false else N1(cdr (t))  
           else if length(t)<7 then false else N0(cd2r (t)) 
M3(t) ≡if length(t)<8 then false else N0(cd3r(t)) 
M4(t) ≡if A=cad3r(t)  
            then if length(t)<8 then false else N1(cd3r(t))  
            else if length(t)<9 then false else N0(cd4r(t)) 
M5(t) ≡if A=cad4r(t)  
            then if length(t)<7 then false else N3(cd2r(t))  
            else if length(t)<10 then false else N0(cd5r(t)) 
In general, Property 3 holds. 
Property 3: The residual program of nm(pat, t, pat, t) where 
pat=a0a1...am-1 for m>0 is N0(t) below: 
N0(t) ≡ if length(t)<m then false 
           else if a0 = car(t) then N1(t) else M1(t) 
Nk(t) ≡if ak=cadkr(t) then Nk+1(t) else Mk+1(t) for 0<k≤m-1 
Nm (t)≡true 
where Mk(t) is one of the following two cases for 0≤i1(k), i2(k), 
0<k≤m and i1(k)+j1(k)=i2(k)+j2(k)=k: 
(1) if length(t)<m+j1(k) then false else Ni1(k)(cdj1(k)r(t))  
(2) if ak=cadkr(t)  
      then if length(t)<m+j1(k) then false else Ni1(k)(cdj1(k)r(t))  
      else if length(t)<m+j2(k) then false else Ni2(k)(cdj2(k)r(t))  
The proof of property 3 is omitted. Later we prove a similar 
property (Theorem 3). N0(t) is an O(n) pattern matcher if we 
assume that functions cadkr(t) and length are computed in 
constant time. Although the size of the program can be O(2m) 
because of case (2) above, N0(t) is a KMP matcher. In order to get 
KMP matchers of size m by partial computation, we define a new 
naive matcher nm1. Here, if2 expression is used in nm2 in a 
context such as e(u)≡if2 p(u) then e1 else e0. The meaning of if2 
is the same as if in (1) total evaluation or (2) partial evaluation 
and p(u) is provable or refutable. However, when p(u) is neither 
provable nor refutable, the partial evaluation is terminated. The 
residual program is e(u) itself (see Appendix 3).  
nm1(p,t,pat,tex) ≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if matchhead(p,t) then nm1(cdr(p),cdr(t),pat,tex) 
    else nm2(pat,cdr(tex),pat,cdr(tex)) 
nm2(p,t,pat,tex) ≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if2 matchhead(p,t) then nm2(cdr(p),cdr(t),pat,tex) 
    else nm2(pat,cdr(tex),pat,cdr(tex)) 
Here, nm, nm1 and nm2 are the same except that nm2 uses if2. 
The residual program obtained by specializing nm1 ([A B A B C], 
t, [A B A B C], t) is N0(t): 

N0(t) ≡ if length(t)<5 then false 
           else if A=car(t) then N1(t) else M1(t) 
N1(t) ≡if B=cadr(t) then N2(t) else M2(t) 
N2(t) ≡if A=cad2r(t) then N3(t) else M3(t) 
N3(t) ≡if B=cad3r(t) then true else M4(t) 
N4(t) ≡if C=cad4r(t) then true else M5(t) 

M1(t) ≡ if length(t)<6 then false else N0(cdr(t)) 
M2(t) ≡ if length(t)<6 then false else N0(cdr(t)) 
M3(t) ≡ if length(t)<8 then false else N0(cd3r(t)) 
M4(t) ≡ if length(t)<8 then false else N0(cd3r(t)) 
M5(t) ≡ if length(t)<7 then false else N2(cd2r(t)) 
In general, Theorem 3 holds. 
Theorem 3: Let the residual program of nm1(ak...am-1, cd kr(t), 
pat,t) with respect to pat=a0a1...am-1 and t=a0...ak-1tk...tn-１ be Nk(t) 
for 0≤k<m for m≤n. Then the following three properties hold: 

(1) N0(t) ≡if length(t)<m then false  
                 else if a0=t0 then N1(t) else M1(t)  
      Nk(t) ≡if ak=tk then Nk+1(t) else Mk+1(t)  
 for some Mk+1(t) for 0≤k<m-1. 

(2) Nm(t)≡true. 

(3) Mk(t)≡ if length(t)<m+j(k) then false else Ni(k)(cdj(k)r(t))  
     for some 0≤i(k), j(k)<m, 0<k≤m such that either i(k)+j(k)= 
     k-1 or j(k)=k and i(k)=0. 
Proof: We conduct GPC manually.  

(1) Nk(t) ≡ {residual program of nm1(ak...am-1, cd kr(t), pat, t)} 
≡ if ak=tk then  
              {residual program of nm1(ak+1...am-1, cd k+1r(t),pat,t)}    
   else {residual program of nm2(pat,cdr(t),pat,cdr(t))} 

≡ if ak=tk then Nk+1(t) else Mk+1(t)                   (by folding) 
where Mk+1(t)≡{residual program of nm2(pat,cdr(t),pat,cdr(t))}. 
Although the same discussion as above holds for N0(t), we put a 
redundant if clause in front of N0(t) for a technical reason.        ٱ                          

(2) Nm(t)≡{residual program of nm1(nil, cd mr(t), pat,t)} =true  ٱ 

(3) Mk+1(t)≡{residual program of nm2(pat,cdr(t), pat, cdr(t))} 
where t= a0...ak-1 tk...tn and tk is any character not equal to ak, i.e. 
ak.                      (from (1)) 
≡if length(t)<m+j(k+1) then false  
   else {residual program of if2 ai(k+1)=tk then nm2(ai(k+1)+1...am-1, 
tk+1...tn,pat,cdj(k+1)r(t)) else nm2(pat, cdj(k+1)+1r(t),pat, 
cd j(k+1)+1r(t))} for some i(k+1) and j(k+1). See the relationship 
between a text and a pattern below. This is because nm2 shifts the 
pattern to the right until tk is compared with some character, say 
ai(k+1) in the pattern. Therefore, the number of the shift is 
j(k+1)=k-i(k+1) and i(k+1)+j(k+1)=k. 

text:  a0... aj(k+1)... ak-1 tk... tm-1 ...tn-1 
  = ... = ?   
pattern:  a0... ai(k+1)-1 ai(k+1)...   

  (3.1) If ai(k+1)=tk is neither provable nor refutable, then Mk+1(t)≡if 
length(t)<m+j(k+1) then false  
   else nm2(ai(k+1)...am-1, tk...tn,pat, cdj(k+1)r(t))  (by folding) 
≡if length(t)<m+j(k+1) then false  
   else {residual program of nm1(ai(k+1)...am-1, tk...tn,pat, 
cdj(k+1)r(t))}                                                    (by folding) 
≡if length(t)<m+j(k) then false else Ni(k+1)(cdj(k+1)r(t))      
                                                                   (by definition) 
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  (3.2) If ai(k+1)=tk is refutable, then 
Mk+1(t)≡if length(t)<m+j(k+1) then false  
 else {residual program of nm2(pat, cdj(k+1)+1r(t),pat,cd j(k+1)+1r(t))} 
≡if length(t)<m+j1(k+1) then false  
 else nm2(ai1(k+1)...am-1, tk...tn,pat,cdj1(k+1)r(t))  
for some i1(k+1)<i(k+1) and j1(k+1)=k-i1(k+1) or k+1. This is 
because nm2 shifts the pattern again to the right until tk is 
compared with some character, say ai1(k+1) in the pattern. See the 
relationship between a text and a pattern below. Therefore, 
i1(k+1)<i(k+1) and the number of the shift is j1(k+1)=k-i1(k+1) 
except when a0=...=ai1(k+1)=ak. In this case, j1(k+1)=k+1 and 
i1(k+1)=0. 

text:  a0... aj1(k+1)... ak-1 tk... tm-1 ...tn-1 
  = ... = ?   
pattern:  a0... ai1(k+1)-1 ai1(k+1)..

. 
  

Therefore,  
Mk+1(t)≡if length(t)<m+j1(k) then false  
 else {residual program of nm1(ai1(k+1)...am-1, tk...tn, 
              pat,cd j1(k+1)r(t))}              (by folding) 
≡if length(t)<m+j1(k) then false else Ni1(k+1) (cd j1(k+1)r(t))    
                                                  (by definition)       
Since tk has only a negative information such as "tk is not ak", 
ai(k+1)=tk can not be provable.                                               ٱ 
 
text:  t0  tk-1 tk... tm-1 ...tn-1 
 =  = ≠   
pattern: a0 ... ak-1 ak... am-1  
      
text:  t0 ar... ak-1 tk... tm-1 ...tn-1 
  = =    
LMP  a0... ak-1-r    
Figure 2: Text, pattern and LMP (Longest Matching Prefix) 

of a pattern a0a1...am-1. 
N0(t) is an O(n) pattern matcher if we assume that functions 
cadkr(t) and length are computed in constant time. Therefore, 
N0(t) is a KMP matcher. Note that i(k)≤∏ [k] holds where ∏ is 
the prefix function in the chapter 34 of [6]. The prefix function 
computes the length of LMP in Fig. 2 when the first unmatching 
character appears at the k-th position in a given text. For example, 
∏ [k] for pattern [A B A B C] is ∏ [0]=0, ∏ [1]=0, ∏ [2]=0, ∏ 
[3]=1, ∏ [4]=2 while i(0)=i(1)=i(2) =i(3)=0, i(4)=2. The 
difference comes from (3.2) of Theorem 3 where N0(t) uses 
information that tk is not equal to ai(k+1). This guarantees that N0(t) 
is a bit more efficient than the KMP matcher shown in [6]. For 
example, N0([A B A C A A A A]) does 5 character-comparisons 
while the matcher in [6] does 6. 
Since partial evaluation preserves the semantics of a source 
program in this case (i.e. neither if0 nor if1 appear in the source 
program), we do not have to prove the correctness of the residual 
program. However, it takes exponential time to generate a KMP 
matcher by GPC because GPC includes theorem proving. We 
believe that this problem can be solved using a self applicable 
GPC just like in the BM case. 

5. CONCLUSION 
We have proven that both BM and KMP pattern matchers can be 
generated from simple non-linear pattern matchers by GPC 
(Generalized Partial Computation). The next task is to show that 
the generation time can be O(m) if we use a self applicable GPC α 
such as α(α,slide#3)(pat)=αslide#3(pat). Since the residual program 
αslide#3 may have no overhead concerning theorem proving, we 
expect αslide#3(pat) runs in O(m). 
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APPENDIX 1 
An illustration of the Boyer-Moore heuristics based on Figure 
34.11, page 878 of [6]. 

(a) Matching the pattern xxxAxABCDECD against a text by 
comparing characters in a right-to-left manner. The shift s is 
invalid; although a “good suffix” CD of the pattern matched 
correctly against the corresponding characters in the text 
(matching characters are shown shaded), the bad character A, 
which didn’t match the corresponding character E in the pattern, 
was discovered in the text. 

(b) The bad-character heuristic (delta1 table in [3]) proposes 
moving the pattern to the right, if possible, by the amount that 
guarantees that the bad text character will match the rightmost 
occurrence of the bad character in the pattern. In this example, 
moving the pattern 4 positions to the right causes the bad text 
character i in the text to match the rightmost A in the pattern, at 
position 6. If the bad character doesn’t occur in the pattern, the 
pattern may be moved completely past the bad character in the 
text. If the rightmost occurrence of the bad character in the pattern 
is to the right of the current bad character position, then this 
heuristic makes no proposal.  
                                  bad character↓   ↓good suffix 
x x x x x x x x x x x A C D x x x x x ···

                                                        ≠   =   = 

s x x x A x A B C D E C D 
(a) 

x x x x x x x x x x x A C D x x x x x ···
                                                     = 
s+4       x x x A x A B C D E C D

(b) 
x x x x x x x x x x x A C D x x x x x ···
                                                           =  = 
s+3       x x x A x A B C D E C D 

(c) 

(c) With the good-suffix heuristic(delta2 table in [3]), the pattern 
is moved to the right by the least amount that guarantees that any 
pattern characters that align with the good suffix CD previously 
found in the text will match those suffix characters. In this 
example, moving the pattern 3 positions to the right satisfies this 
condition. Since the good suffix heuristic proposes a movement of 
3 positions, which is smaller than the 4-position proposal of the 
bad character heuristic, the Boyer-Moore algorithm increases the 
shift by 4. 

APPENDIX 2 
We show that bm(p,pat,tex) can be derived systematically from 
gm1 and slide#1. 
gm1(pat,tex)≡if null(pat) then true  
    else if length(tex)<length(pat) then false 
    else (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))     
           (slide#1(pat,tex)) 

slide#1(p,t)≡if null(p) then 0 
    else if matchlast(p,t) then slide#1(butlast(p),t) else 1 

Generalizing pat in slide#1(pat,tex), we define a new function  
bm(p,pat,tex) where gm1(pat,tex)=bm(pat,pat,tex). 

bm(p,pat,tex)≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else (λj.if j=0 then true else gm1(pat,nthcdr(j,tex))) 
           (slide#1(p,tex)) 
≡{distribution of   
    (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))  
    over if-then-else of slide#1(p,tex)} 
≡if null(pat) then true  
    else if length(tex)<length(pat) then false  
    else if null(p) then true 
    else if matchlast(p,tex) 
    then (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))  
            (slide#1(butlast(p),tex))   
    else gm1(pat,cdr(tex)) 
≡{folding} 
≡if null(pat) then true  
    else if length(tex)<length(pat) then false  
    else if null(p) then true 
    else if matchlast(p,tex) then bm(butlast(p),pat,tex) 
    else bm(pat,pat,cdr(tex)) 
Therefore, 
bm(p,pat,tex)≡if null(pat) then true  
    else if length(tex)<length(pat) then false  
    else if null(p) then true 
    else if matchlast(p,tex) then bm(butlast(p),pat,tex) 
    else bm(pat,pat,cdr(tex)) 

APPENDIX 3 
There are four types of conditional expressions if, if0, if1 and if2 
for GPC. All the expressions have the same meaning in total 
evaluation. However, they have different meanings in GPC and 
if0, if1 and if2 are used to protect commission errors. A 
commission error means generation of inefficient programs 
caused by too much partial evaluation [9]. 

Let e(u) be an expression and i be an environment. Then, 
gpc(e(u),i) stands for a residual program of GPC of e(u) with 
respect to i. 

(1) When e(u)≡if p(u) then e1(u) else e0(u), then gpc(e(u),i) is: 
(1-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i. 
(1-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i. 
(1-3) if p(u) then gpc(e1(u),i∩p(u)) else gpc(e0(u),i∩¬p(u)) if       
        otherwise. 

(2) When e(u)≡if0 p(u) then e1(u) else e0(u), then gpc(e(u),i) is: 
(2-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i. 
(2-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i. 
(2-3) gpc(e0(u),i) if otherwise. 

(3) When e(u)≡if1 p(u) then e1(u) else e0(u), then gpc(e(u),i) is: 
(3-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i. 
(3-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i. 
(3-3) gpc(e1(u),i) if otherwise. 

(4) When e(u)≡if2 p(u) then e1(u) else e0(u), then gpc(e(u),i) is: 
(4-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i. 
(4-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i. 
(4-3) e(u) itself if otherwise. 
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Note that uses of if0 and if1 change the semantics of residual 
programs. Therefore, we have to prove the correctness of residual 
programs when we use if0 or if1 expressions in source programs. 

APPENDIX 4 
We show that nm(p,t,pat,tex) can be derived systematically from 
gm6 and slide#6. 
gm6(pat,tex)≡if null(pat) then true    
    else if length(tex)<length(pat) then false  
    else (λj.if j=0 then true else gm6(pat,nthcdr(j,tex))) 
           (slide#6(pat,tex)) 

slide#6(p,t)≡if null(p) then 0 
     else if matchhead(p,t) then slide#6(cdr(p),cdr(t)) else 1 

Generalizing pat and tex in slide#6(pat,tex), we define a new 
function nm(p,t,pat,tex) where gm6(pat,tex)=nm(pat,tex,pat,tex). 

nm(p,t,pat,tex)≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else (λj.if j=0 then true else gm6(pat,nthcdr(j,tex))) 
           (slide#6(p,t)) 
≡{distribution of   
    (λj.if j=0 then true else gm6(pat,nthcdr(j,tex)))  
    over if-then-else of slide#6(p,t)} 
≡if null(pat) then true  
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if matchhead(p,t) 

    then (λj.if j=0 then true else gm6(pat,nthcdr(j,ttex)))  
            (slide#6(cdr(p),cdr(t)))   
    else gm6(pat,cdr(tex)) 
≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if matchhead(p,t) 
    then (λj.if j=0 then true else gm6(pat,nthcdr(j,tex))) 
            (slide#6(cdr(p),cdr(t)))   
    else nm(pat,cdr(tex),pat,cdr(tex)) 
≡{folding} 
≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if matchhead(p,t) then nm(cdr(p),cdr(t),pat,tex) 
    else nm(pat,cdr(tex),pat,cdr(tex))  
Therefore, 
nm(p,t,pat,tex) ≡if null(pat) then true 
    else if length(tex)<length(pat) then false 
    else if null(p) then true 
    else if matchhead(p,t) then nm(cdr(p),cdr(t),pat,tex) 
    else nm(pat,cdr(tex),pat,cdr(tex)) 
 

 

 


