

 1

Automatic Generation of Efficient String Matching
Algorithms by Generalized Partial Computation

Yoshihiko Futamura
Department of Information and

Computer Science
Waseda University

3-4-1 Okubo, Shinjuku
Tokyo, Japan 169-8555
futamura@waseda.jp

Zenjiro Konishi
Institute for Software Production

Technology
Waseda University

3-4-1 Okubo, Shinjuku
Tokyo, Japan 169-8555

konishi@futamura.info.waseda.ac.jp

Robert Glück1
PRESTO,JST and Institute for

Software Production Technology
Waseda University

3-4-1 Okubo, Shinjuku
Tokyo, Japan 169-8555

glueck@acm.org

ABSTRACT
This paper shows that Generalized Partial Computation (GPC)
can automatically generate efficient string matching algorithms.
GPC is a program transformation method utilizing partial
information about input data and auxiliary functions as well as the
logical structure of a source program. GPC uses both a classical
partial evaluator and an inference engine such as a theorem prover
to optimize programs. First, we show that a Boyer-Moore (BM)
type pattern matcher without the bad-character heuristic can be
generated from a simple non-linear backward matcher by GPC.
This sort of problems has already been discussed in the literature
using offline partial evaluators. However, there was no proof that
every generated matcher runs in the same way as the BM. In this
paper we prove that the problem can be solved starting from a
simple non-linear pattern matcher as a source program. We also
prove that a Knuth-Morris-Pratt (KMP) type linear string matcher
can be generated from a naive non-linear forward matcher by
GPC.

Categories and Subject Descriptors
I.2.2 [Programming Techniques]: Automatic Programming –
program transformation; F.3.2 [Logics and Meaning of
Programs]: Semantics of Programming Languages – partial
evaluation.

General Terms
Algorithms

Keywords
automatic program generation, Boyer-Moore pattern matcher,
Knuth-Morris-Pratt pattern matcher, naive pattern matcher

1. INTRODUCTION
Efficient algorithms are difficult to develop while inefficient ones
are easy. This paper shows that some efficient algorithms can be
automatically generated from inefficient ones. Automatic
generation of an efficient pattern matcher from a naive one,
introduced in [7], is a typical problem for partial evaluation
[1,2,5,10,14]. Let m be the length of a given pattern and n be the
length of a given text. Then the problem can be classified as two
problems:

Type 1: Can we generate an O(n) pattern matcher of size O(m)
 from a naive non-linear matcher and a given pattern?

Type 2: Can we generate an O(m) algorithm from a given
 matcher that generates an O(n) pattern matcher of
 size O(m) from a given pattern?

The problems can be rephrased in partial evaluation terms. Let α,
pm, t and p be a partial evaluator, pattern matcher, text and
pattern, respectively. Let the residual program of x with respect to
y be xy i.e. xy=α(x,y). Then we can redefine the above problems
as follows:

Type 1: Does pmp(t) run in O(n) time for any t and is pmp of size
 O(m)?

Type 2: Does αpm(p)(t) run in O(m+n) time for any p and t? And
 is αpm(p) of size O(m)? 1

Apparently, Type 2 problem is more difficult than Type 1 and has
never been solved by partial evaluation to the best of authors'
knowledge. This paper deals with Type 1 problem and reports that,
by Generalized Partial Computation (GPC) [8,9], we can generate
(1) a Boyer-Moore (BM) type pattern matcher [3] without the
bad-character heuristic (the delta1 table in [3]; see Appendix 1)
from a non-linear backward matcher and (2) a Knuth-Morris-Pratt
(KMP) matcher from a non-linear forward matcher. Generation of
a BM type matcher has been discussed in [2] using off-line partial
evaluator. However, there was no proof that every generated
matcher runs in the same way as the BM matcher. Here we will
show that the problem can be solved starting from a simple non-
linear pattern matcher as a source program by on-line partial
evaluator. We also prove that every generated matcher runs

1 On leave from DIKU, Dept. of Computer Science, University of

Copenhagen.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA-PEPM’02, September 12-14, 2002, Aizu, Japan.
Copyright 2002 ACM 1-58113-458-4/02/0009…$5.00.

 2

exactly the same way as the BM. Generation of KMP matchers by
offline partial evaluator with a correctness proof has been
discussed in [1]. Here, we start from a simpler source program
than [1] by using online partial evaluator. Appendix 1 explains the
BM algorithm following the presentation in [6]. There are many
variations of the BM and KMP algorithms. We define (1) a BM
matcher as an O(n) time and O(m) size pattern matcher which
utilizes the good suffix in Appendix 1 and (2) a KMP matcher as
an O(n) time and O(m) size pattern matcher which utilizes the
longest matching prefix (LMP) in Fig. 2. This paper assumes that
readers are familiar with program transformation [13] and partial
evaluation [11].

2. NAIVE BACKWARD MATCHER
Let a given pattern be p=a0a1...am-1 and a given text be t=t0t1...tn-1.
Then the shortest unmatching suffix (SUS) of p with respect to t is
ak-1ak...am-1 where ak-1≠tk-1 and either (1) aj=tj for 0<k≤j≤m-1 or
(2) k-1=m-1 (Fig.1). We say ak...am-1 is the good suffix and tk-1 is
the bad character. A prefix of p is a0...am-1-i for 0≤i≤m. The longest
matching prefix (LMP) of pattern p with respect to t is the longest
prefix a0...am-1-r such that a0=tr,...,am-1-r=tm-1 for 0≤r≤m (Fig.1).

text: t0 ... tk-1 tk ... tm-1 ...tn-1
 ≠ = ... =
SUS: ak-1 ak ... am-1

text: to tr tm-1 ...tn-1
 = =
LMP: a0 ... am-1-r
prefix i: a0 ... am-1-i

We define a generic pattern matcher gmi(p,t). The matcher returns
true if pattern p is found in text t; false otherwise. The matcher is
parameterized with respect to a slide function slide#i(p,t). The
matcher can be controlled by different slide functions. When
slide#i finds a match, it returns 0 and gmi returns true. If the slide
function finds a mismatch, the matcher slides the pattern
slide#i(p,t) characters to the right and repeats the comparison.

gmi(p,t)≡if null(p) then true
 else if length(t)<length(p) then false
 else (λj.if j=0 then true else gmi(p,nthcdr(j,t)))
 (slide#i(p,t))

We use four primitive functions: last(p,k) returns the last k
elements in p; when k is omitted, the default value is 1.
butlast(p,k) returns a copy of list p without the last k elements;
when k is omitted, the default value is 1. nthcdr(k,t) is equivalent
to calling cdr k times in succession with t as the initial argument.
nth(k,p) returns k-th element of a list p. Note that the first element
of p is nth(0,p).

A naive slide function compares p against t backward from tm-1 to
t0 and returns 1 when it finds a bad character. Pattern matcher
gm1 uses slide#1.

slide#1(p,t)≡if null(p) then 0
 else if matchlast(p,t) then slide#1(butlast(p),t) else 1
where matchlast(p,t)≡(car(last(p))=nth(length(p)-1,t))

2.1 SPECIALIZATION OF THE MATCHER
Specializing gm1 with respect to a pattern, for example [A A B],
our GPC system just unfolds the source program and does not
improve the residual program significantly.

Another naive matcher, readers may think, is bm(p,pat,tex) below
where gm1(pat,tex)=bm(pat,pat,tex):

bm(p,pat,tex)≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchlast(p,tex) then bm(butlast(p),pat,tex)
 else bm(pat,pat,cdr(tex))

Although gm1 and bm look different, bm can be derived
systematically from gm1 (see Appendix 2 for the derivation). Our
GPC system does not generate an efficient residual program when
specializing bm with respect to a pattern, either. Therefore, we
have to use a little more sophisticated slide function slide#2.

Instead of moving down the text by 1 in case of a mismatch,
slide#2 below searches for LMP of p with respect to t. Its value is
the distance we must slide pattern p to align the discovered LMP
with its counter part in t. If the LMP is a0...am-1-r in Fig.1,
slide#2(p,t)=r for 0≤r≤m.

slide#2(p,t)≡loop2(p,p,t)

loop2(p,pat,t)≡if null(p) then 0
 else if matchlast(p,t) then loop2(butlast(p),pat,t)
 else slide#2(butlast(pat),cdr(t))+1

It is not difficult to see that function gm2 is a correct pattern
matcher whose complexity is at least O(mn). For example, it takes
km(m-1)/2 comparisons to check a pattern ABm-1 against a text
Bkm.

Examples: LMP’s are shaded in both patterns and texts.

(1) slide#2([A A B],[C A A ...])=1
(2) slide#2 ([B A A], [A A A ...])=3
(3) slide#2([A B C X X X A B C], [Z B C X X X A B C ...])=6
(4) slide#2([A B C X X X A B C], [A B C X X X A Z C ...])=9
(5) slide#2([A B Y X C D E Y X], [A Z Y X C D E Y X ...])=9
(6) slide#2([A B Y X C D E Y X], [A B Y X C A B Y X ...])=5

 GPC system generates a non-linear matcher when specializing
slide#2 with respect to some pattern including [A A B]. For
example, the residual program slide#2 with respect to [A A B]:

slide#2[A A B](t)≡
 if B = nth(2, t)
 then if A = nth(1, t)
 then if A = nth(0, t) then 0 else 3
 else 3
 else if A = nth(2, t)
 then if A = nth(1, t) then 1 else 2
 else 3

This program runs O(mn) for such a text as AA...A where m=3 in
this case. The reason is that after a mismatch with B, two

Figure 1. SUS (Shortest Unmatching Suffix) and LMP
(Longest Matching Prefix) of a pattern a0a1...am-1.

 3

successful comparisions with A slide the pattern only by 1. If the
else part if B = nth(2, t) of slide#2[A A B] could be just 1 instead of

else if A = nth(2, t)
 then if A = nth(1, t) then 1 else 2
 else 3
then the residual program could be O(n). This means that the GPC
system conducts too much job at the partial evaluation time. This
is a commission error [9].

2.2 EASING RULES
To avoid this sort of commission errors, we use the following two
easing rules of character matching in slide#2:

 (1-1) ak-1 matches any character in p except ak-1.

(1-2) Every character of text to the left of ak-1 matches any
 character in pattern p.

We use if1 expression to implement the easing idea and define
new function slide#3 based on slide#2. Here, if1 expression is
used in a context such as if1 p(u) then e1 else e0. The meaning of
if1 is the same as if in (1) total evaluation or (2) partial evaluation
and p(u) is provable or refutable. However, when p(u) is neither
provable nor refutable, the residual program is the residual
program of e1. See Appendix 3 for more details about conditional
expressions for GPC.

slide#3(p,t)≡loop3(p,p,t)

loop3(p,pat,t)≡if null(p) then 0
 else if matchlast(p,t) then loop3(butlast(p),pat,t)
 else slide#4(butlast(pat),cdr(t))+1

slide#4(p,t)≡loop4(p,p,t)

loop4(p,pat,t)≡if null(p) then 0
 else if1 matchlast(p,t) then loop4(butlast(p),pat,t)
 else slide#4(butlast(pat),cdr(t))+1

If p and t are known, then slide#2(p,t)=slide#3(p,t)=slide#4(p,t).
This use of if1 expression in slide#4 relaxes the matching
criterion of characters and decreases the value of slide#2. Note
that, for k=1,...,m and m-k+1≤j≤m, the value of slide#4a0a1...aj-2 (tm-

j+1...ak-1ak...am-1...) can be computed without knowing the value of
t. Therefore, the residual code for expression
slide#4(butlast(pat),cdr(t))+1 will always be a value j itself for
which 1≤j≤slide#2(butlast(pat),cdr(t))+1. Therefore, it is safe to
slide a pattern for j. This means that the conditional if1 in slide#4
does not spoil the correctness of the residual programs in this case.

For example, the residual program slide#3[A A B] below takes 1 for
text [X Y Z ...] (i.e. slide#3[A A B] ([X Y Z ...])=1) while
slide#2([A A B],[X Y Z ...])=3. (This inequality does not happen
for the pattern and text combinations in the examples above).

When we specialize slide#3 with respect to pattern [A A B], the
GPC system generates the following residual program.

slide#3[A A B](t)≡if B= nth(2, t)
 then if A=nth(1, t)
 then if A=nth(0, t) then 0 else 3
 else 3
 else 1

The residual matcher with slide#3[A A B] runs in O(n).

For short, we refer this program as 3,3,1. Table 1 shows more
residual programs with generation time by our GPC system for
example patterns. If we conduct GPC manually, we can get
Property 1 below.

Property 1: Residual program of slide#3 with respect to
p=a0a1...am-1 for m>0 is:

slide#3a0a1...am-1(t)≡ if am-1= nth(m-1, t)
 then if am-2=nth(m-2, t)
 ...
 then if a1= nth(1, t) then 0
 then if a0= nth(0, t) then 0
 else slide#4a0a1...am-2(a1a2...am-1 ...)+1
 else slide#4a0a1...am-2(a1a2...am-1 ...)+1
 ...
 else slide#4a0a1...am-2(t1...tm-3am-2am-1 ...)+1
else slide#4a0a1...am-2(t1...tm-2am-1 ...)+1

We abbreviate the residual program by writing the following
sequence of numbers:
slide#3a0a1...am-1(t)≡ slide#4a0a1...am-2 (a1a1...am-1 ...)+1,...,
 slide#4a0a1...am-2 (t1...tm-2am-1 ...)+1.

Note here that each slide#4a0a1...aj-2(tm-j+1...ak-1ak...am-1...) is a
constant. We obtain a specialized version of gm3(a0a1...am-1,t) by
replacing call slide#3(a0a1...am-1,t) inside gm3 by call
slide#3a0a1...am-1(t). We prove in the next section that the new
matcher behaves in the same way as the BM matcher. In general,
the residual program of slide#3 with respect to a pattern produced
by GPC is equivalent to delta2 table in [3]. Thus gm3 runs exactly
the same way as the BM without the bad-character heuristic [6].
See [4] for complexity discussions concerning the BM matcher.

Table 1. Example patterns and generation time
Machine Specification: Pentium III 650MHz, Windows 98SE,
Allegro Common Lisp 5.0.1

Pattern GPC
Time
(secs)

Number of
Theorem
Proving

Residual Program

[A A B] 6 54 3, 3, 1

[B A A] 7 57 3, 1, 2

[A B C X X X
A B C]

245 721 6, 6, 6, 6, 6, 6, 9, 9, 1

[A B Y X C D
E Y X]

275 808 9, 9, 9, 9, 9, 9, 5, 9, 1

3. PROOF
First, we define a new function slide#5(p,t) which is the
implementation of the good-suffix heuristic of the Boyer-Moore
algorithm (Appendix 1). Then we prove slide#3p(t)=slide#5(p,t)
for any p and t. slide#5 is not naive because it is the central idea
of the BM algorithm. It first tries to find SUS of p with respect to
t from the right:
 text: t0 ... tk-1 tk ... tm-1 tm... tn-1
 ≠ = ... =
 pattern: a0 ... ak-1 ak ... am-1

Then it calls find([ak-1], cdr(SUS), a0 ...am-2) to search string

 4

ak-1ak ...am-1in a0 ...am-2 from the right and returns r as its value.
See the relationship between a text and a pattern below.
 text: t0 ... tk-1 ak ... am-1 tm... tn-1
 pattern: a0... ak-1 ak ... am-1 am-r...am-1

However, when cdr(SUS) is not included in a0 ...am-2 then find
calls slide#2(a0 ...am-k-1, cdr(SUS)) to find the LMP of a0 ...am-k-1
with respect to cdr(SUS) and returns s as its value. See the
relationship between a text and a pattern below.
 text: t0 tk-1 ak... a0... am-s-1 tm... tn-1
 pattern: a0... am-s-1 am-s...am-1

The value of find is the distance we must slide pattern p to align
the discovered substring with its counter part in t. For example,
find([E], [Y X], [A B Y X C D E Y])=4 and find([B], [A A], [B
A])= slide#2([B A], [A A])=2.

slide#5(p,t)≡loop5(p,p,t,[])

loop5(p,pat,t,w)≡if null(p) then 0
 else if matchlast(p,t) then
 loop5(butlast(p),pat,t,append(last(p),w))
 else find(last(p),w,butlast(pat))+1

find(c,w,p)≡if null(p) then 0
 else if length(w)=length(p) then slide#2(p,w)
 else if w=last(p,length(w)) and
 c≠last(butlast(p),length(w)) then 0
 else find(c,w,butlast(p))+1

For the pattern and text combinations in the examples above,
slide#5 takes the same value as slide#2. However, slide#5([A A
B], [X Y Z ...])=1 while slide#2([A A B], [X Y Z ...])=3. Theorem
1 below proves that the value of slide#5 is equal or less than the
value of slide#2. This means that gm5 or the BM matcher is a
correct matcher.

Theorem 1: find([ak-1], ak...am-1, a0 ...aj-2)≤
slide#2(a0...aj-2, tm-j+1...ak-1ak...am-1...) for k=1,...,m and m-k+1
≤j≤m.

Proof: We prove the theorem by mathematical induction on j.

Base: If j=m-k+1 then length(ak...am-1)=length(a0...am-k-1) .
Therefore, find([ak-1], ak...am-1, a0...am-k-1)= slide#2(a0...am-k-1,
ak...am-1...).

Induction Step: (1) If ak...am-1= aj+k-1-m...aj-2 and aj+k-2-m≠ak-1 then
find([ak-1], ak...am-1, a0 ...aj-2)=0, while slide#2(a0...aj-1,
tm-j...ak-1ak...am-1...)≥0

(2) If there is a mismatch between ak...am-1 and aj+k-1-m...aj-2
or aj+k-2-m=ak-1, then find([ak-1],ak...am-1,a0...aj-2)=find([ak-1],
ak...am-1,a0...aj-3)+1≤slide#2(a0...aj-3,tm-j+2...ak-1ak...am-1...)+1
=slide#2(a0...aj-2, tm-j+1...ak-1ak...am-1...) . Therefore, slide#5(a0...am-

1,t0...ak-1ak...am-1...)=find([ak-1],ak...am-1,a0...am-2)≤slide#2(a0...am-

1,t0...ak-1ak...am-1 ...) ٱ

It is easy to see that we can make delta2 table of [3] using function
find. Note that find can be computed depending only on p. If we
conduct GPC manually, we can get Property 2 below.

Property 2: Residual program of slide#5 with respect to
p=a0a1...am-1 for m>0 is:

slide#5 a0a1...am-1 (t)≡ if am-1= nth(m-1, t)
 then if am-2=nth(m-2, t)
 ...
 then if a0= nth(0, t) then 0
 else find([a0], a1...am-1, a0 ...am-2)
 ...
 else find([am-2], am-1, a0 ...am-2)+1
 else find([am-1], nil, a0 ...am-2)+1
≡find([a0], a1...am-1, a0 ...am-2)+1,..., find([am-1], nil, a0 ...am-2)+1.

In order to prove that slide#3a0a1...am-1(t)=slide#5a0a1...am-1 (t), we
prove Theorem 2 below.

Theorem 2: slide#4 a0a1...aj-2(tm-j+1...ak-1ak...am-1...)=find([ak-1],
ak...am-1, a0 ...aj-2) for k=1,...,m and m-k+1≤j≤m.

Proof: We prove the property by mathematical induction on j.

Base: (1) If j=m-k+1then slide#4a0...aj-2(ak...am-1...)=
slide#4(a0...am-k-1,ak...am-1...)= slide#2(a0...am-k-1,ak...am-1...)=
slide#2(a0...aj-2, ak...am-1) and find([ak-1], ak...am-1,a0...aj-2)
=slide#2(a0...aj-2, ak...am-1...).

(2) If ak...am-1=aj+k-1-m...aj-2 and aj+k-2-m≠ak-1 then
slide#4a0...aj-2(tm-j+1...ak-1ak...am-1 ...)=0 and
find([ak-1], ak...am-1, a0 ...aj-2)=0.

Induction Step: There is a mismatch between ak...am-1and
aj+k-1-m...aj-2 or aj+k-2-m=ak-1. Then find([ak-1], ak...am-1, a0 ...aj-2)
=find([ak-1], ak...am-1,a0...aj-3)+1=
slide#4a0...aj-3(tm-j+2...ak-1ak...am-1...)+1=
slide#4a0...aj-2(tm-j+1...ak-1ak...am-1...). ٱ

Therefore, we can assert that gm3a0a1...am-1(t) behaves in the same
way as the BM pattern matcher. However, it takes exponential
time to generate a matcher by GPC because GPC includes
theorem proving. In order to generate a BM matcher in O(m) time,
we can self-apply GPC α such as α(α,slide#3)(pat) =α(slide#3,pat).
Since the residual program of α(α,slide#3), i.e. αslide#3, may have
no overhead concerning theorem proving, we expect αslide#3(pat)
runs in O(m). The residual program will be an implementation of
the BM algorithm. Unfortunately, we have not proved this
assertion yet.

4. GENERATION OF KMP MATCHER
Let slide#6 be a naive slide function which compares p against t
from t0 to tm-1 and returns 1 when it finds an unmatched character.
This implements a forward pattern matcher gm6.

slide#6(p,t)≡if null(p) then 0
 else if matchhead(p,t) then slide#6(cdr(p),cdr(t)) else 1
where matchhead(p,t)≡(car(p)=car(t)).

The following naive matcher nm can be derived systematically
from gm6 (the derivation is shown in Appendix 4).

nm(p,t,pat,tex) ≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchhead(p,t) then nm(cdr(p),cdr(t),pat,tex)
 else nm(pat,cdr(tex),pat,cdr(tex))
Our GPC system [9] produces a KMP-style O(n) pattern matcher
[12] from nm and a given pattern. For example, the residual

 5

program obtained by specializing nm([A B A B C], t, [A B A B
C], t) is N0(t):
N0(t) ≡ if length(t)<5 then false
 else if A = car(t) then N1(t) else M1(t)
N1(t) ≡if B=cadr(t) then N2(t) else M2(t)
N2(t) ≡if A=cad2r(t) then N3(t) else M3(t)
N3(t) ≡if B=cad3r(t) then N4(t) else M4(t)
N4(t) ≡if C=cad4r(t) then true else M5(t)
M1(t) ≡if length(t)<6 then false else N0(cdr(t))
M2(t) ≡if A=cadr(t)
 then if length(t)<6 then false else N1(cdr (t))
 else if length(t)<7 then false else N0(cd2r (t))
M3(t) ≡if length(t)<8 then false else N0(cd3r(t))
M4(t) ≡if A=cad3r(t)
 then if length(t)<8 then false else N1(cd3r(t))
 else if length(t)<9 then false else N0(cd4r(t))
M5(t) ≡if A=cad4r(t)
 then if length(t)<7 then false else N3(cd2r(t))
 else if length(t)<10 then false else N0(cd5r(t))
In general, Property 3 holds.
Property 3: The residual program of nm(pat, t, pat, t) where
pat=a0a1...am-1 for m>0 is N0(t) below:
N0(t) ≡ if length(t)<m then false
 else if a0 = car(t) then N1(t) else M1(t)
Nk(t) ≡if ak=cadkr(t) then Nk+1(t) else Mk+1(t) for 0<k≤m-1
Nm (t)≡true
where Mk(t) is one of the following two cases for 0≤i1(k), i2(k),
0<k≤m and i1(k)+j1(k)=i2(k)+j2(k)=k:
(1) if length(t)<m+j1(k) then false else Ni1(k)(cdj1(k)r(t))
(2) if ak=cadkr(t)
 then if length(t)<m+j1(k) then false else Ni1(k)(cdj1(k)r(t))
 else if length(t)<m+j2(k) then false else Ni2(k)(cdj2(k)r(t))
The proof of property 3 is omitted. Later we prove a similar
property (Theorem 3). N0(t) is an O(n) pattern matcher if we
assume that functions cadkr(t) and length are computed in
constant time. Although the size of the program can be O(2m)
because of case (2) above, N0(t) is a KMP matcher. In order to get
KMP matchers of size m by partial computation, we define a new
naive matcher nm1. Here, if2 expression is used in nm2 in a
context such as e(u)≡if2 p(u) then e1 else e0. The meaning of if2
is the same as if in (1) total evaluation or (2) partial evaluation
and p(u) is provable or refutable. However, when p(u) is neither
provable nor refutable, the partial evaluation is terminated. The
residual program is e(u) itself (see Appendix 3).
nm1(p,t,pat,tex) ≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchhead(p,t) then nm1(cdr(p),cdr(t),pat,tex)
 else nm2(pat,cdr(tex),pat,cdr(tex))
nm2(p,t,pat,tex) ≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if2 matchhead(p,t) then nm2(cdr(p),cdr(t),pat,tex)
 else nm2(pat,cdr(tex),pat,cdr(tex))
Here, nm, nm1 and nm2 are the same except that nm2 uses if2.
The residual program obtained by specializing nm1 ([A B A B C],
t, [A B A B C], t) is N0(t):

N0(t) ≡ if length(t)<5 then false
 else if A=car(t) then N1(t) else M1(t)
N1(t) ≡if B=cadr(t) then N2(t) else M2(t)
N2(t) ≡if A=cad2r(t) then N3(t) else M3(t)
N3(t) ≡if B=cad3r(t) then true else M4(t)
N4(t) ≡if C=cad4r(t) then true else M5(t)

M1(t) ≡ if length(t)<6 then false else N0(cdr(t))
M2(t) ≡ if length(t)<6 then false else N0(cdr(t))
M3(t) ≡ if length(t)<8 then false else N0(cd3r(t))
M4(t) ≡ if length(t)<8 then false else N0(cd3r(t))
M5(t) ≡ if length(t)<7 then false else N2(cd2r(t))
In general, Theorem 3 holds.
Theorem 3: Let the residual program of nm1(ak...am-1, cd kr(t),
pat,t) with respect to pat=a0a1...am-1 and t=a0...ak-1tk...tn-１ be Nk(t)
for 0≤k<m for m≤n. Then the following three properties hold:

(1) N0(t) ≡if length(t)<m then false
 else if a0=t0 then N1(t) else M1(t)
 Nk(t) ≡if ak=tk then Nk+1(t) else Mk+1(t)
 for some Mk+1(t) for 0≤k<m-1.

(2) Nm(t)≡true.

(3) Mk(t)≡ if length(t)<m+j(k) then false else Ni(k)(cdj(k)r(t))
 for some 0≤i(k), j(k)<m, 0<k≤m such that either i(k)+j(k)=
 k-1 or j(k)=k and i(k)=0.
Proof: We conduct GPC manually.

(1) Nk(t) ≡ {residual program of nm1(ak...am-1, cd kr(t), pat, t)}
≡ if ak=tk then
 {residual program of nm1(ak+1...am-1, cd k+1r(t),pat,t)}
 else {residual program of nm2(pat,cdr(t),pat,cdr(t))}

≡ if ak=tk then Nk+1(t) else Mk+1(t) (by folding)
where Mk+1(t)≡{residual program of nm2(pat,cdr(t),pat,cdr(t))}.
Although the same discussion as above holds for N0(t), we put a
redundant if clause in front of N0(t) for a technical reason. ٱ

(2) Nm(t)≡{residual program of nm1(nil, cd mr(t), pat,t)} =true ٱ

(3) Mk+1(t)≡{residual program of nm2(pat,cdr(t), pat, cdr(t))}
where t= a0...ak-1 tk...tn and tk is any character not equal to ak, i.e.
ak. (from (1))
≡if length(t)<m+j(k+1) then false
 else {residual program of if2 ai(k+1)=tk then nm2(ai(k+1)+1...am-1,
tk+1...tn,pat,cdj(k+1)r(t)) else nm2(pat, cdj(k+1)+1r(t),pat,
cd j(k+1)+1r(t))} for some i(k+1) and j(k+1). See the relationship
between a text and a pattern below. This is because nm2 shifts the
pattern to the right until tk is compared with some character, say
ai(k+1) in the pattern. Therefore, the number of the shift is
j(k+1)=k-i(k+1) and i(k+1)+j(k+1)=k.

text: a0... aj(k+1)... ak-1 tk... tm-1 ...tn-1
 = ... = ?
pattern: a0... ai(k+1)-1 ai(k+1)...

 (3.1) If ai(k+1)=tk is neither provable nor refutable, then Mk+1(t)≡if
length(t)<m+j(k+1) then false
 else nm2(ai(k+1)...am-1, tk...tn,pat, cdj(k+1)r(t)) (by folding)
≡if length(t)<m+j(k+1) then false
 else {residual program of nm1(ai(k+1)...am-1, tk...tn,pat,
cdj(k+1)r(t))} (by folding)
≡if length(t)<m+j(k) then false else Ni(k+1)(cdj(k+1)r(t))
 (by definition)

 6

 (3.2) If ai(k+1)=tk is refutable, then
Mk+1(t)≡if length(t)<m+j(k+1) then false
 else {residual program of nm2(pat, cdj(k+1)+1r(t),pat,cd j(k+1)+1r(t))}
≡if length(t)<m+j1(k+1) then false
 else nm2(ai1(k+1)...am-1, tk...tn,pat,cdj1(k+1)r(t))
for some i1(k+1)<i(k+1) and j1(k+1)=k-i1(k+1) or k+1. This is
because nm2 shifts the pattern again to the right until tk is
compared with some character, say ai1(k+1) in the pattern. See the
relationship between a text and a pattern below. Therefore,
i1(k+1)<i(k+1) and the number of the shift is j1(k+1)=k-i1(k+1)
except when a0=...=ai1(k+1)=ak. In this case, j1(k+1)=k+1 and
i1(k+1)=0.

text: a0... aj1(k+1)... ak-1 tk... tm-1 ...tn-1
 = ... = ?
pattern: a0... ai1(k+1)-1 ai1(k+1)..

.

Therefore,
Mk+1(t)≡if length(t)<m+j1(k) then false
 else {residual program of nm1(ai1(k+1)...am-1, tk...tn,
 pat,cd j1(k+1)r(t))} (by folding)
≡if length(t)<m+j1(k) then false else Ni1(k+1) (cd j1(k+1)r(t))
 (by definition)
Since tk has only a negative information such as "tk is not ak",
ai(k+1)=tk can not be provable. ٱ

text: t0 tk-1 tk... tm-1 ...tn-1
 = = ≠
pattern: a0 ... ak-1 ak... am-1

text: t0 ar... ak-1 tk... tm-1 ...tn-1
 = =
LMP a0... ak-1-r
Figure 2: Text, pattern and LMP (Longest Matching Prefix)

of a pattern a0a1...am-1.
N0(t) is an O(n) pattern matcher if we assume that functions
cadkr(t) and length are computed in constant time. Therefore,
N0(t) is a KMP matcher. Note that i(k)≤∏ [k] holds where ∏ is
the prefix function in the chapter 34 of [6]. The prefix function
computes the length of LMP in Fig. 2 when the first unmatching
character appears at the k-th position in a given text. For example,
∏ [k] for pattern [A B A B C] is ∏ [0]=0, ∏ [1]=0, ∏ [2]=0, ∏
[3]=1, ∏ [4]=2 while i(0)=i(1)=i(2) =i(3)=0, i(4)=2. The
difference comes from (3.2) of Theorem 3 where N0(t) uses
information that tk is not equal to ai(k+1). This guarantees that N0(t)
is a bit more efficient than the KMP matcher shown in [6]. For
example, N0([A B A C A A A A]) does 5 character-comparisons
while the matcher in [6] does 6.
Since partial evaluation preserves the semantics of a source
program in this case (i.e. neither if0 nor if1 appear in the source
program), we do not have to prove the correctness of the residual
program. However, it takes exponential time to generate a KMP
matcher by GPC because GPC includes theorem proving. We
believe that this problem can be solved using a self applicable
GPC just like in the BM case.

5. CONCLUSION
We have proven that both BM and KMP pattern matchers can be
generated from simple non-linear pattern matchers by GPC
(Generalized Partial Computation). The next task is to show that
the generation time can be O(m) if we use a self applicable GPC α
such as α(α,slide#3)(pat)=αslide#3(pat). Since the residual program
αslide#3 may have no overhead concerning theorem proving, we
expect αslide#3(pat) runs in O(m).

6. REFERENCES
[1] Ager, M.S., Danvy, O. and Rohde, H.K.: On Obtaining the

KMP String Matcher by Partial Evaluation, ASIA-PEPM
2002, September, 2002.

[2] Amtoft, T., Consel, C., Danvy, O. and Malmkjaer, K.: The
abstraction and instantiation of string-matching programs,
BRICS RS-01-12, Department of Computer Science,
University of Aarhus, April 2001.

[3] Boyer, R.S. and Moore, J.S.: A fast string searching
algorithm, Comm. ACM 20 (10) (1977) 762-772.

[4] Cole, R.: Tight bounds on the complexity of the Boyer-
Moore string matching algorithm, SIAM Journal on
Computing, Vol.23, Issue 5 (October 1994), 1075-1091.

[5] Consel, C. and Danvy, O.: Partial evaluation of pattern
matching in strings, Information Processing Letters, 30 (2),
January 1989, 79-86.

[6] Cormen, T.H., Leiserson, C.E. and Rivest, R.L.: Introduction
to Algorithms (first edition), MIT Press, 1990.

[7] Futamura, Y. and Nogi, K.Generalized partial computation.
in Bjørner, D. and Ershov, A. P. and Jones, N. D. (eds),
Partial Evaluation and Mixed Computation, 133-151, North-
Holland, 1988.

[8] Futamura, Y., Nogi, K. and Takano, A.: Essence of
generalized partial computation, Theoretical Computer
Science 90 (1991), 61-79.

[9] Futamura, Y., Konishi, Z. and Glück , R.: Program
Transformation system based on Generalized Partial
Computation, New Generation Computing, Vol.20 No.1,
Nov 2001. 75-99.

[10] Glück R. and Klimov A.V. Occam's razor in
metacomputation: the notion of a perfect process tree. In:
CousotP., et al. (eds.), Static Analysis. Lecture Notes in
Comp. Science, Vol. 724, Springer-Verlag 1993, 112-123.

[11] Jones, N. D.: An Introduction to Partial Evaluation, ACM
Computing Surveys, Vol.28, No.3, September 1996, 480-503.

[12] Knuth, D.E., Morris, J. and Pratt, V.: Fast pattern matching
in strings. SIAM Journal on Computing, 6(1973), 325-350.

[13] Pettorossi, A. and Proietti, M. Rules and Strategies for
Transforming Functional and Logic Programs, ACM
Computing Surveys, Vol.28, No.2, June 1996, 360-414.

[14] Sørensen M. H., Glück R., Jones N. D., A positive
supercompiler. In: Journal of Functional Programming, 6(6),
1996. 811-838.

 7

APPENDIX 1
An illustration of the Boyer-Moore heuristics based on Figure
34.11, page 878 of [6].

(a) Matching the pattern xxxAxABCDECD against a text by
comparing characters in a right-to-left manner. The shift s is
invalid; although a “good suffix” CD of the pattern matched
correctly against the corresponding characters in the text
(matching characters are shown shaded), the bad character A,
which didn’t match the corresponding character E in the pattern,
was discovered in the text.

(b) The bad-character heuristic (delta1 table in [3]) proposes
moving the pattern to the right, if possible, by the amount that
guarantees that the bad text character will match the rightmost
occurrence of the bad character in the pattern. In this example,
moving the pattern 4 positions to the right causes the bad text
character i in the text to match the rightmost A in the pattern, at
position 6. If the bad character doesn’t occur in the pattern, the
pattern may be moved completely past the bad character in the
text. If the rightmost occurrence of the bad character in the pattern
is to the right of the current bad character position, then this
heuristic makes no proposal.
 bad character↓ ↓good suffix
x x x x x x x x x x x A C D x x x x x ···

 ≠ = =

s x x x A x A B C D E C D
(a)

x x x x x x x x x x x A C D x x x x x ···
 =
s+4 x x x A x A B C D E C D

(b)
x x x x x x x x x x x A C D x x x x x ···
 = =
s+3 x x x A x A B C D E C D

(c)

(c) With the good-suffix heuristic(delta2 table in [3]), the pattern
is moved to the right by the least amount that guarantees that any
pattern characters that align with the good suffix CD previously
found in the text will match those suffix characters. In this
example, moving the pattern 3 positions to the right satisfies this
condition. Since the good suffix heuristic proposes a movement of
3 positions, which is smaller than the 4-position proposal of the
bad character heuristic, the Boyer-Moore algorithm increases the
shift by 4.

APPENDIX 2
We show that bm(p,pat,tex) can be derived systematically from
gm1 and slide#1.
gm1(pat,tex)≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))
 (slide#1(pat,tex))

slide#1(p,t)≡if null(p) then 0
 else if matchlast(p,t) then slide#1(butlast(p),t) else 1

Generalizing pat in slide#1(pat,tex), we define a new function
bm(p,pat,tex) where gm1(pat,tex)=bm(pat,pat,tex).

bm(p,pat,tex)≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))
 (slide#1(p,tex))
≡{distribution of
 (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))
 over if-then-else of slide#1(p,tex)}
≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchlast(p,tex)
 then (λj.if j=0 then true else gm1(pat,nthcdr(j,tex)))
 (slide#1(butlast(p),tex))
 else gm1(pat,cdr(tex))
≡{folding}
≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchlast(p,tex) then bm(butlast(p),pat,tex)
 else bm(pat,pat,cdr(tex))
Therefore,
bm(p,pat,tex)≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchlast(p,tex) then bm(butlast(p),pat,tex)
 else bm(pat,pat,cdr(tex))

APPENDIX 3
There are four types of conditional expressions if, if0, if1 and if2
for GPC. All the expressions have the same meaning in total
evaluation. However, they have different meanings in GPC and
if0, if1 and if2 are used to protect commission errors. A
commission error means generation of inefficient programs
caused by too much partial evaluation [9].

Let e(u) be an expression and i be an environment. Then,
gpc(e(u),i) stands for a residual program of GPC of e(u) with
respect to i.

(1) When e(u)≡if p(u) then e1(u) else e0(u), then gpc(e(u),i) is:
(1-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i.
(1-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i.
(1-3) if p(u) then gpc(e1(u),i∩p(u)) else gpc(e0(u),i∩¬p(u)) if
 otherwise.

(2) When e(u)≡if0 p(u) then e1(u) else e0(u), then gpc(e(u),i) is:
(2-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i.
(2-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i.
(2-3) gpc(e0(u),i) if otherwise.

(3) When e(u)≡if1 p(u) then e1(u) else e0(u), then gpc(e(u),i) is:
(3-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i.
(3-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i.
(3-3) gpc(e1(u),i) if otherwise.

(4) When e(u)≡if2 p(u) then e1(u) else e0(u), then gpc(e(u),i) is:
(4-1) gpc(e1(u),i∩p(u)) if p(u) is provable from i.
(4-2) gpc(e0(u),i∩¬p(u)) if p(u) is refutable from i.
(4-3) e(u) itself if otherwise.

 8

Note that uses of if0 and if1 change the semantics of residual
programs. Therefore, we have to prove the correctness of residual
programs when we use if0 or if1 expressions in source programs.

APPENDIX 4
We show that nm(p,t,pat,tex) can be derived systematically from
gm6 and slide#6.
gm6(pat,tex)≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else (λj.if j=0 then true else gm6(pat,nthcdr(j,tex)))
 (slide#6(pat,tex))

slide#6(p,t)≡if null(p) then 0
 else if matchhead(p,t) then slide#6(cdr(p),cdr(t)) else 1

Generalizing pat and tex in slide#6(pat,tex), we define a new
function nm(p,t,pat,tex) where gm6(pat,tex)=nm(pat,tex,pat,tex).

nm(p,t,pat,tex)≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else (λj.if j=0 then true else gm6(pat,nthcdr(j,tex)))
 (slide#6(p,t))
≡{distribution of
 (λj.if j=0 then true else gm6(pat,nthcdr(j,tex)))
 over if-then-else of slide#6(p,t)}
≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchhead(p,t)

 then (λj.if j=0 then true else gm6(pat,nthcdr(j,ttex)))
 (slide#6(cdr(p),cdr(t)))
 else gm6(pat,cdr(tex))
≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchhead(p,t)
 then (λj.if j=0 then true else gm6(pat,nthcdr(j,tex)))
 (slide#6(cdr(p),cdr(t)))
 else nm(pat,cdr(tex),pat,cdr(tex))
≡{folding}
≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchhead(p,t) then nm(cdr(p),cdr(t),pat,tex)
 else nm(pat,cdr(tex),pat,cdr(tex))
Therefore,
nm(p,t,pat,tex) ≡if null(pat) then true
 else if length(tex)<length(pat) then false
 else if null(p) then true
 else if matchhead(p,t) then nm(cdr(p),cdr(t),pat,tex)
 else nm(pat,cdr(tex),pat,cdr(tex))

