Partial Evaluation of Computation Process

and its Application to Compiler Generation

Yoshihiko Futamura,
Central Research Laboratory, Hitachi, Ltd.

Kokubunji, Tokyo, Japan.

ABSTRACT:

This paper discusses algqrithms for evaluating
partions of a computation process (program) cn the basis
of given partial informsgstion. Let us suppose a case where
a computation process containing variables is being evaluated,
where iterative computations are-performed in which the
values of the process variables are changed, and where there
are numerous iterations. In such a case, if an algorithm
of this type is used, it will be possible to transform the
computatibn process s0 as to reduce the time complexity in
the computation, making the computation more convenient
than it would be if the process were to be carried out
without any transformation at all. Furthermore, in cases
when the semantics of a programming language is given by
an interpreter, it will also be possible to generate a
cowpiler to translate the program belonging to that language
irntvo a program in the language describing the interpreter.
KEY WORDS AND PHRASES: computation process, partial
| evaluation, algorithm, programming language, interpreter,
compiler. |

CR CATEGORIES: 4.12, 4.13, 5.23, 5.24

1 Introduction

This paper discusses algorithms for evaluating
poriions of a computation processl on the basis of given
partial information. It is believed that this report is
the first general consideration ever to be devoted to the
partial evaluation of computation processes. Consider
the case when a computation process containing variables,2
in which the initial values of these variables are changed,
is performed iteratively, or the case when the computation
process which contains iterations suck as loops or
recursive calls is performed. When the number of iterations
increases, it will then bpe possible to transform the
computation process so as to reduce the time complexity
in the computation, making the computation more convenient
than it would be if the-process were to be carried out
without any transformations at all.

For instance, let us suppose that the following

computation process is given:

1) By "computation processes" are meant Turing machines,
recursive functions, arithmetic expressions, computer
programs, graphs, etc.

2) By "variables" are meant the tape expressions and
internal states of Turing machines; variables in recursive
functions, graphs, and arithmetic expressions; the program
parameters of computer programs; etc.

flx, y) =xx (x % x+x+y+1)+y %y

Let us presume that the values of x and Yy are given as
x=1, 2, ..., n
y=1, 2, ..., 1
and that iterative computations are performed for them.
In this case, one will evaluate- f(x, y) with respect to
the values of x and y. In other words, the fpllowing is
executed: | ' ﬂ

for =x:=1 gtep 1 until n do for y:=1 sieg 1

until £do f(x, y): :x*(x*x+x+y+l:b+y*y
In this case; altogether 3nl multiplications ind 4nl
additions will be performed. Consequently, l‘t us express
by m and a the time complexity required in the multipli-
cation and addition, respectively. In this case, the total
number of processes will be (3m + 4alnl. With respect to
X,, the value of x, define fx, (y) as follows. That is,
one evaluates, from the computation procesges of f(x, y),
those portions which can be evaluated with only the value

of x(that is, xo) and the constants. These portions

are, X *x+ x + 1. The portions which cannot be

3) Evaluation of a computation process means to execute
the computations, giving the initial values of the variagbles.

evaluated unless the value of y is given are left untouched.
That which is obtained in this way is treated as a new
computation process. In other wbrds, the following is

obtained:

£13) =1 G +y)+yxy

fz(y) 2 *x (T+y)+y*y

it

Now let us suppose that one has first sought fx(y) with
respect to x = 1, 2, ..., n, and that one has next executed
the following:

for x:=1 gtep 1 until n do for y:=1 gtep 1 until 1

do f(x, y): = £x(y)
Let us use k to express the time complexity needed to
transform f(x, y) into fx(y). 1In this case, k2m + 2a.
In the new computation processes, the number of processges

required here for all of the f(x, y) computations will be:
(2m + 2a)nl + nk
Consequently, in cases when

1 >k/(m + 2a)

rather than cohtinuing the iterative calculations of
f(x, y) without modification, it will be preferable to
compute after transforming into fx(y). If this is done,

it will be possible to reduce the time complékity of
w

f

processes.

In this manner, when X, the value of variable x,
is given, one evaluates the portion of f(x, 3) which can

be evaluated by using X, and the constants cdntained in

the computation process f(x, y). Thus, the transformations
for obtaining computation process fxo(y) are called the .

partial evaluation at value x_ with respect‘to variable

o)
x of f(x, y). In this case, the partial evaluation is a
gsort of algebraic manipulation.

Generally speaking, transformations of the. following
type are termed partial evaluation of the computation
process at value c'l, ceay c'm with respect to variable
Cqs ...,‘cm. "In a computation process containing m + n
variables Cqs wves Cps Tqs e« Tppy the wvalues c'l, ceay

¢' are assigned to variables Cqps eess C and evaluation

m m’

is performed of the portions which can be evaluated with
only these values and the constants included in the com-
putation process. The portions which cannot be evaluated
unless the values of the remaining wvariables are given are
left untouched. In this manner, the original computation

process is trangformed into a computation process having

-5 -

n variables. The computation process obtained in this
manner is evaluated by assigning values r'l, fany r’n to

the variables Tiy eevs T contained therein. When this is

n
done, the evaluation will coincide with the evaluation

obtained when the values c'l, ceey ¢' and r'l, ceey T

m
were assigned to the variables in the original computation
process." . (In Chapter 2 of this paper a precise definition
of partial evaluation is provided, and it is shown that it
is not always possible to perform partial evaluation for
any computation process and for any combination of vari-.
ables.)

One of the most important applications of partial
evaluation is compiler generation when the semantics of
the programming language is given by an interpreter.

The compiler will in this case translate the sentences
belonging to the programming language (the program) into
a program in the semantic metalanguage dictating the
interpreter.

The interpreter of a programming language is a
computation process containing variables. One of its
variables corresponds to the sentence belonging to the
programming language (the program), which is given as a
value. The values of the other variables are given as
the information necessary for evaluating this sentence.

From among the variables contained in the interpreter,

-6 -

e.g. int, let us represent all of the variables corre-
sponding to the sentence belonging to the language, or
corresponding to the information necessary for syntax
analysis or semantic analysis of the sentence, as Cis +oes

c (assuming that the sentence is given in cl). Also let us

n

represent the other variables as Tiy eeuy Tpo Agsigning
values c'l, ceey c'm to Cys sevs Cpy let us partially evalu-
ate the interpreter at c'l, ey c'm with respect to Cq

»ess Cpo Thus, let us suppose thaf we obtain in this way:

Cl ye ey C'm(rl’ ree rn)

In view of the nature of partial evaluation, in

int ., C'm(rl’ ce e rn), the evaluation has been

Cl',
completed only concerning c'l, ooy c'm and the constants.
In other words, the syntax analysis and the semantic analysis .

of the sentence has been completed. Furthermore, the

expression
s 1 1 — S 1 t
1ntcl,, o, c'm(rl y eee, T n) = 1nt(cl yoeeey 'y
applies {o any r'l, e r'n. Consequently, in intcl', e,

C'm(rl’ cens rn), sentence c¢'; is thought to be translated
into a program in the language dictating the interpreter

(the semantic metalanguage). r'l, ceny r'n can be thought

t0 be the values needed when the translated program is

running. Consequently, it is thought that, by performing
partial evaluation of the interpreter, one can compile
the sentences belonging to the language into a program in
the semantic metalanguage. Utilizing this characteristic
feature of partial evaluation, one generates the comiler
of the programming language from the interpreter.
In order to eliminate ambiguity in the discussion
of the foregoing matters in this paper, the computation
processes are expressed in terms of LISP functions (1)
in the S-expression, and the variables are expressed
as their bound variables (that is, 4 -variables).
As long as there is a well formulated formalism adequate
for expressing the computation process, any of the following
may be used: Turing machines, partial recursive functions,
graphs, arithmetic expressions, or computer programs. In
spite of this, the LISP formalism has been selected in
this paper for the following reasons. First, the semantic
meanings are simple and clear. Second, by using induction
(2], the correctness of the algorithms can be proven
formally. Third, computation processes dictated in LISP
can be put into an electronic computer without modification.
In Chapter 2 of this paper, a precise definition of
partial evaluation of computation processes is given, and

its characteristic features are investigated.

In Chapter 3, the algorithms of partial evaluation are
described informally. In Chapter 4, the method of
generating the compiler from the interpreter of the
programming language is described, and the relationships
between the interpreter and the compiler are investigated.
Although this method represents a new approach to
compiler-compiler, this pPaper does not touch upon its
application to one.

A formal description of the partial evaluation
algorithms_is given in Appendix 1. Formal proofs of .
their correctness can be made, for the most part, by
means of the inductiod method given in Reference (2y,
although there still remain some portions which cannot
be proven formally. Therefore this paper does not touch
upon the proof. In Appendix 2 ig given an example of

compiler generation by the method described in Chapter 4.

2 Partigl Evaluation of the Computation Process

The S-expression (1) of LISP is used to express the
computation process. Its interpretation is given by the
. universal function apply of pure LISP (1).

This report defines that two m-expressions are
weakly equivalenﬁ (3) when they, P(Xy5eeens ;X
q[xl; H xn], satisfy the following condition, and

repregent it as
p[xl; ; xn] = q[xl;.....; xnj
w

"Letting domain of P and q to be Dp and Dgq,
p[yl;.....; nJ = q[yl; 3 ¥,) is held for all
elements [yl; ; yn] of DpQNDqg".
where the equality sign stands for equality of S-
expression. The equality of S-expression is determined‘
by the LISP predicate equal.

However, in some cases in the following discussions,
two m-expressions may be defined to be equivalent when
p[xl; : xnj = q(Xy3.....; x,) and Dp = Dq, and may
be represented as p[xl; H an = q[xl; PoX,).

Also, the equality baged upon definition may be represented
by the sign = to avoid confusion of equality of lists and .

equivalence of m-expressions.

- 10 -

(Definition 1) The computation‘process is a LISP
function in S-expression which is constructed from the
folloﬁing five primitive functions: CAR, CDR, CONS, ATOM,
and EQ, using function composition, conditional expression,
and recursion. PFurthermore, it must not contain free
variables and satisfy the following two conditions:

1) There is nothing in common between the 4 variables
and the label variables (i.e. function names).

2) The same label variable must not be used as the name

for different functions.

(Definition 2) The variables in a computation
process are the variables in the outermost A-expression
contained in the given computation process.
Example: Computation process Variables
(LAMBDA (X Y Z)(FN X Y Z)) X, Y, Z
(LABEL FN (LAMBDA (U V W) (G (CONSU V) W))) U, V, W

The three restrictions in Definition 1 were adopted
merely in order to simplify the discussion. Let it be

noted that they can be removed easily.

- 11 -

(Definition 3) If the computation process is
represented as n and the list of initial values of the
variables as args, then the evaluation of © at args is

expressed as follows:
apply (m; args; NIL)

The sequence of vagriables in the computation process
T is expressed by 7. Any sub-sequence of 7 is expresgssed
by vl. After Wl has been eliminated from %, the remaining

sequence 1s expressed as_v2. Let the following be posited:

= C C

vl 1, 2y m

=R R

7, 10 eees Ry
The symbols vl' and v2' are used to represent the sequences
of values which are bounded to every variables of Wl and
7,, respectively. Ci(i=l, ..., m) is called the comﬁile
time variable (hereinafter abbreviated to ev), and

Rj(j=1, ..., n) is called the run time variable (herein-
after abbreviated to rv). Furthermore, let the following

also be posited:
cly = (7;)
rl, = (7

cly

]}
~—
=3
[
S

- 12 -

(Definition 4) The transformation given by @, the
algorithm satisfying the following Equation (1), shall
be called the partial evaluation of the computation
process # at value (sequence of values) cl'y with respect
to variable (sequence of variables) clp, and & shall be

called the partial evaluation algorithm.

apply (a{m; rlr; clpy; cl'z); rl'g; NIL J

= 80 rlx; cly; ol'g; rl'pg; NIL J mmmem e (1)

Here,

o

g(m; rly; clp; clizs r1'2;5 a)

[atom[zrj—-»g[eval[n; al 5 Tlp; clg; cel'ys rl',; a];
eq(car(n); LAMBDA) — eval(caddr (z);

pairlis(cln; clly ; pairlis(rlp; rl'z; a)]);

eq(car(m); LABEL)~ g(caddr (n); rlp;

clg; cl'p; rl'y; append(lis‘cl[cons[c:aclr(n'l;j

caddr (#))}; &))),

list,(x) = cons(x; NIL)

- 13 -

The right side of Equation (1) is the evaluation of
after the values corresponding to each of the variables
11 cees Cm, Rl, Ceey Rn have been given. In 6thef words,
if the variables of 7 are arranged in a A variable list in

C

the order Cl’ ooy Cm’ Rl, ceey Rn’ the right side of

Equation (1) will be:
apply(#; append(cl',; rl'p}; NIL)
Pogiting

val(m; clp; cl'y; rlp; rl'y)

g g(n; rig; clpg; cl'y; rl'y; NIL)
let us rewrite Equation (1) as follows:

apply(@(n; rlg; clp; cl'p); rl'y; NIL)

= val(m; cly; cl'z; rlpy rl'p)—mmmmm e (2)

The trivial algorithm satisfying Equation (1) will
subgtitute quoted values of the cv'variables contained in
n for corresponding variables. It would be useless to
perform partial evaluation of x using this algorithm.

Therefore; the algorithm sought in this paper will be

- 14 -

a more complex one. It must satisfactorily satisfy the
following two contradictory requiréments.

dl) It must be able to evaluate as many portions of =z
as possible which can be evaluated only by the constants
contained in m and by the values of the cv. However,

d2) As far as possible, it ought not to evaluate those
portions which are actually not evaluated when the values
of ¢v and rv are given to evaluate 7. |

(Note that the partial evaluation describek in the
Introduction refers to a special type of par?ial evalu-

2
The purpose of requirement dl is the following.

ation which satisfies only di, but not d,.)

After partial evaluation of m has been completed, a new
computation process is obtained; and the values of the
rv are supplied, and it is evaluated. This requirement
is for the purpose of reducing the time complexity in
computation when this is done. The purpose of the second:
requirement is to eliminate wasteful processes during
partial evaluation.

In the following are given intuitive explanations,
using graphs, of the general concept of the partial
evaluation algorithm given informally in Chapter % of
this paper (hereinafter this algorithm is called al).
In the ensuing graphs, the nodes {symbol o) indicate

branching points depending upon truth-or-falsehood judgment.

- 15 -

The branches (arrows) indicate the computation processes and
flow of computations not containing branching point. The

leaves (symbol e) indicate the termination of a computation
process. Let us suppose that we have a computation process

7 represented graphically as in Fig. 1.

Fig. 1. Graphic representation of 7
Dys eeny n7 are names given to the nodes.

bl’ ooy b15 are names given to the branches.

Let us suppose that the variables of n are Ol’ ceay Cm,

Rl, v ey Rn’

evaluation at the value cl'y with respect to Cl’ seny

and that 7 is to be subjected to partial

Cm. If the computation process beginning from branch

bi is expressed as TS then Fig. 1 contains fifteen
computation processes: @ (=m), Tos <e+y ®ig. Starting

from
Ll

- 16 -

clnl = clg

Cl'n'l = Cl'n

we proceed to define clm; and cl'z;, (i =1, ..., 15)

in the following way.

clni: If the control is transfered to T from branch be’
then the list of the variables of ™5 of which corresponding

arguments can be evaluated only by the constants and cl'ﬁe.

Cl'"i: The list of arguments corresponding to Cl"i‘
(Note that Clpy and cl's, may vary from computation to

computation.)

Let us subject 7= to partial evaluation by means of
operations i) and ii) described below. Here, we assume

that
ir =15 §j(1): = j(2): = ... = §(15): =1

i) In bi, we evaluate the portions which can be
evaluated by méans of cl'ni and the constants alone.
We attach marks to then indicating that these portions
have already been evaluéted. The new branch obtained
by this operation is called biﬁgi}'and operation ii)
is parformed. (bij(i) is a new cbmputation process

- 17 -

resulting from bi’ not a reformulation of bi‘ Therefore,
by is left in its previous form.) |

ii) Suppose that the.process following b, (in other
words, the arrow-point of bi) is judgment 4y

If the judgment of Dy (1) can be performed by cl'zm
and the constants alone, then one of the branches is
selected, depending upon the result of the judgment
(predicate). If, for instance, the branch is bp, we carry
out i: = p; j(i): = j(i) + 1; and execute operation 1i).

If the judgment of M (1) cannot be performed by. cl'sy
and the constants alone, no'judgment is performed. At each
of the following two branches (bp and bq) the suffix (p or
q) is assigned to i, j(i) is increased by 1, and operation
i) is applied.

If b is followed by the sign e 1ndlcat1ng the termi-
nation of the oomputatlon process, partial evaluatlon is
discontinued.

For example, let us suppose that it has been possible
to perform the judgments of Ny, N, and ne iniFig. 1l in
terms of cl'ni(i =1, 3, 6) and the constants;alone, and
that branches b3, b7, and b12 have been selecfed on the
basis of each of these judgments. In this cage, 7 will be

‘ \
transformed into the following computation pricess on

account of operations i) and ii).

- 18 -

o’

oy

Y

.

Let us consider a case in which it has been possible

o
HH I W P

o
N

to perform the judgments of ny and ne by means of cl'rri
(1 = 1, 6) and the constants alone, but in which it was not
possible to perform the judgment of Nz by means of cl'rr3

and the oonstantg alone. Suppose that branch b3 is always
selected for n,, and that for Ne, b13 is first selected, and

b12 is next selected. In this case, x will be transformed

into the following computation process.

oy

<
<

o

o
TN
o B

[\
— ‘
o B o) (on
AW W JHW W
N -

o
=
n

o

- 19 -

Let it be noted that no consideration is paid to
requirement d,) in operations i) and ii).

In the example given above, if branch b13 is always
selected for judgment n,, operations i) and ii) will not

come to an end. In other words, the following infinite

sequence will be generated:

* e o=t

If the reason why branch bl3 is always selected for
judgment ne is the fact that the argument of judgment ne
‘is constant or periodic, then it will be possible to

generate a finite graph by adding fhe following operations

- 20 -

to i) and ii).

ia) At the beginning of operation i), one generates
j (1
a,’)’
i(i)
i

the name of bij(i), and puts the pair cl'rzi and
a at the list determined by ™, and clni, for example

»iia) Before proceeding from operation ii) to i), an
investigation is made to see if the list stk[np; clﬂp]
contains a pair having cl'n-p as its first term. If there
is sﬁch a pair, an arrow is drawn at the corresponding
bpj(p), (vhich is found by its name apj(P)) and the partial
evaluation is discontinued. If there is no such pair,
operation i) is performed.

When this has been done, the computation process in

the previous example will assume the form of a finite graph

a8 shown in the following diagram.

o o
W

s

N

o’

o
HH ~JF

o
W WA

[n}

- 21 -

a, is the algorithm in which ia) and iia) are added
to operations i) and ii), and in which requirement d2)
is also taken into consideration. However, the portions
related to requirement d2) are not dealt with in this
chapter.

The following is an example of a computation process
in whiohcxl does not terminate.

In the diagram below, suppose that judgment nq cannot
be executed by means of cl'n-l or clin3 and the constants
alone, At this time, even if the b3 process is subjgcteﬁl
to iterative partial evaluation, an infinite graph will

still be generated as long as the same cl'n3 is not produced.

(That is, a; will not terminate.)

Even in cases when val(#@; clz; cl'n; rlm; rl'z)
terminates (that is, is defined), it does not necessarily
follow that a,(@; rlg; clg; cl'z) will terminate, and
vice versa. These questions will be touched upon in the

following chapter after al_has been described in detail.

- 22 -

3 Partial Evaluation Algorithm

Let us describe informally the algorithmtll for partial
evaluation of the computation process (LISP S-expression).
A formal description of this algorithm is given in the

Appendix 1.

5.1 Outline of Function of o,

In the case of a, , the computation process, for' example
T, is analyzed by a method similar to the universal func-
tion apply. Evaluation is performed of the partia} process
of T which can be evaluated by the value of cvn.l énd the
constants alone. The portion which cannot be evaluated is
copied unaltered,‘and a new computation process no% contain-

ing cvn-l is made up. For example, let us suppose phat ﬁl

and its partial process m, are as follows:

n, = (LAMBDA (X Y 2Z) ((LAMBDA (U V) (CONS U V)) X
(CONS Y Z))) | ",
0171 = (Y 2)
cl,z-l = (A B)
rlTi = (X)
rlm = (¢)

At this time, the task of aq will be {o evaluate the X and
the (CONS Y Z) of (”2 X (CONS Y Z)). Since X is Ty s it
is left unmodified. Since Y and Z are cvni, (CONS Y Z) is

- 23 -

evaluated. X and (CONS Y Z) correspond to the 7, variables
U and V, respectively. Since the expression containing rvnl
(X, in other words, the Vi, itself) corresponds to U, we

regard U as rvnz. Since the expression not containing rv”l

corresponds to V, we regard V as cv,.. Thus, we assume that
T

C:ln_-2 = (V)
cly = ((A-B))
I'ln-z = (U)

Thus, we make up (LABEL 7?% (LAMBDA (X) (ﬂé X))). Where,ﬁ'é"
is made up from 75 in the following manner. The task of al

is to evaluate the (CONS U V) of o Since U is rvng, it

is left unmodified. Since V is cvn2, QUOTE is added to its

value. (When the function part is neither a j-expression or

a label expression, QUOTE is attached to the result of
evaluation of the argument.) Thus, (LABEL n; (LAMBDA (U)

(CONS U (QUOTE (A-B))))) is made up and used as n%. That is:
n% = (LAMBDA (X) (né X))
né = (LAMBDA (U) (CONS U (QUOTE (A-B))))

At this time, the following relationship obviously

applies:

apply[:nl; (C A B); NIL) = apply[:r%; (C); NIL)=
(c(4+3))

+*

- 24 -

When the computation process o is a label eﬁpression

of the following type: :

(LABEL APPEND =«

My = (LAMBDA (X Y) (COND ((NULL X) Y) (T (CONS (CAR X)
(APPEND (CDR X) Y)))))

then

cln3= cln4

Let us now assume that:

n
=

Cln—

3

11}
LS
td

cl;

]
1<

rl,r3 =
al memorizes AFPPEND and ﬂ4 as a pair. (This is the same as
the treatment of LABEL in apply.) Thus, when the (NULL X)
of ﬂ4 is evaluated, since the value is NIL, the attempt will
be made to evaluate (CONS (CAR X) (APPEND (CDR X) Y)).

(CAR X) is evaluated, and its value is marked QUOTE. (CDR
X) is evaluated, and (LABEL 7T1 (LAMBDA (Y) (CONS (QUOTE A)
(Wi Y)))) is made up. Where, in the case of?rz, it is

agsumed that:
0177:4 = (X)
clz, = ((B))

- 25 -

I‘ln-4 = (Y)

and Ty is subjected to partial evaluation in the same way

as previously. That is,
ni = (LAMBDA (Y) (CONS (QUOTE B) (RZ)))

Similarly, nz also is the result of partial evaluation

of Ty assuming that:

01n4 = (X)
cl ;1'4 = (NIL}
I'.ln.4 = (Y)

In other words, since (NULL X) is T, Y is selected, and we

obtain:

nz ~ (LAMBDA (Y) Y)

\

At this point the partial evaluation of 5 Ccomes to an end,.
1

Before performing the partial evaluation of a computa-

tion process, for example of =, al will generateithe name

(i.e. the head location) nl of the new computatiﬁn process

to be obtained by partial evaluation, and will poéit the

1

pair of cly and 771 at the list determined by 7 and clg —-

for example, stk;[n; clg). For instance, in the example

givén above, let us now assume that:

- 26 -

Hi
g

cly

01;3 ((¢ D))

[
=

I‘ln_-

a]. will first generate the name ni and will put
(((c D))-Hi) at stk(m,; (Y)). Since (NULL X) cannot be
evaluated unless the values of rv;;3 are given, the following

is made up:

(LABEL ”jﬁ(LAMBDA (X) (COND ((NULL X) (QUOTE (C D)))

(T (CONS (CAR X) (zj (CIR X)))))))

Here, nz is formed by partial evaluation of n4, assuming -

that:
Cl;r4 = (Y)
1
4
I'ln-4 = (X)
a investigates the list stkl:n4; (Y)]. Since (({(C D))-Hi)
is already here, ni is used as the result of the partial

evaluation of n4. In other words, ni = ﬂi.

3.2 Informal Description of ay
! '
a, (75 rlg; clg; clzlas B (7; rlp; clp; ol

NIL; NIL)

- 27 -

B has six variables: &y, 5, 8z, 8, g and ag. As their
values, they are given the computation process w, rly, clg,
el'y, the list for processing of LABEL, and the list for
memorizing the names once they have been generated. The
functions of @ are shown in terms of the following operations

1) through 5)

1) This operation is similar to the LISP interpreter

apply.

1.1) If rly is NIL, that is if all of the variables of =
are cvy, then 7 is evaluated using cl'y, and a no-argument

function having the result as constant is made up.

B(m; NIL; clgpg; cl'p; ag; ag]
= list 3(LAMBDA; NIL; list 2(QUOTE; g(m; NIL; clz;
cl'yg; NIL; asjjj

Here, listn{n =1, 2, 3, ...) is defined as the following

function:

listr1[xl; ceed Xy)= cons[xl; cons[xg; vee}

cons (X, ; NIL]J...]

1.2) VWhen 7 is an atom, it is evaluated in terms of a.

And B is.executed regarding the value of 7 as a new 7.

- 28 -

Blm; rlpy; clpg; cl'y; ag; ag)

=B (eval(m a5j; rlg; clyg; cl'y; 853 a6]

1.3) VWhen @ is a A-expression, if on the list
stk(m; clpy; ag Jthere is a doted pair with cl'z as its first
term, then its second term will be taken as the value of 8.
If this is not the case, a name for example ”l, is
generated for the results of the partial evaluation, and they
are put in the list stk(=; clp; a6] as a doted pair ‘with
¢l'z. Then the results of the processing of 7 in 2) and the

following sections will be a label-body7 of a label

expression which has nl as its label variable.

1.4} If m is a label-expression, the label variable and
the label-body are taken as a pair and put in list 35; and

8

the A-body~ of the label-body is processed by means of 1).

B(m; rlg; clpg; cl'y; ag; ag)
= B caddr (7); rig: clg; cl'y; append{list 1 (cons

(cadr (n); caddr (7))); ag)i ag).

7) <label expression>::=(LABEL<1abel variable><label-body>)
<label-body>::=<d-expression> '

8) <A-expression>::=(LAMBDA<A variable> <i-body>)
<A-body>: :=<form>

- 29 -

2) The 4 variable is changed into rl,, and the i-body is

processed by means of 3).

B(m; rlx; clm cl'n; ags ag)
= 1list 3(LAMBDA; rlg; 33[caddrEnJ; rln; clps

cl' ag; a6:]j
Here, 83 indicates processing at 3}

3) Here, form processing is performed by a method similar

to eval. This is expressed as BBEformn; rlz; clg; cl'n§

ag} ag J.

3.1) If form does not contain rvp, cl'yp is used to
evaluate form,, and the results are used as the constants.

(That is, QUOTE is added.)

BBEformﬁ; rly; clg; cl'ss a3 a6]
= 1list 2(QUOTE; eval(form,; pairlis(clr;
cl'z; ag JJJ

3.2) If formgy is rvy, the results will be formp itself.

BBEform”; rlp; clg; ol'z; ag; ag J= formr

3.%3) If car(form,) is a primitive, each of the elements

of cdr[fbrmn] is subjected to processing at 3).

- 30 -

St s a3 h e e

Ba[formn; rly; elg; cl'y; ag; ag J
= cons(car(formy); elist(cdr (formg); rig;

cly; cl'y; ag; a6j].

Here, elist(y) will make a list of the elements of list y

after subjecting them to processing at 3).

3.4) If formp is a conditional expression, cdr(formg)

is processed at 4).

3.5) If car(formgy)is a A-expression, from among the A
variables, one assembles together those corresponding to the
elements of cdr[fofmn] not containing rvg. With these the
¢l of car(form;) is made up. The remaining variables are
gathered together to make up rl. Among the elements of
cdr(formz), those not containing rvy; are evaluated using
¢l'yz. A list is made up, with these as its elements, and
is used as the cll, of car(formg].

After this has been done, car[form”] is processed by
1), and the result is consed with the list of the elements
of cdr[formnj containing rvy, and subjected to proces-

sing at 3).

3.6) When car(form,) is a label-expression, the same

processing as in 3.5) is performed. However, instead of

-*

- 31 -

|
subjecting car(formz) to the processing at 1), the dotted

pair of the label variables and the label-body are put at

ag and caddr(form,) is subjected to processing ot 1).

3.7) If car(form,) is an atom, that is, a label variable,
its definition expression is extracted from 85 and this is

used as car [formz) and subjected to the processing at %).

BBEformﬂ; rlg; clg; cl'y; ag; ag J
= 33[cons[eval[car[formn:h a5j; cdr (formg));

rig; clg; cl'y; ag; ag)

4) At this point, the conditional expression is processed.

This operation represented in the following
B4(xx Tln; clps ol'n; ag; agl.
Here, x; assumes the appearance of:

((pls Vl)’ ---; (pk’ Vk))

4.1) VWhen the leftmost predicate part of xg (for instance,
pi) does not contain rvg, Py is evaluated using cl'p. If
its value is T, the corresponding value part vy is subjected

to processing at 3).

194[x”; rlg; olg; cl'z; ag; ag)= BBEVi; rlp;

clyg; cl'ys a5;'a6)

- %2 -

If its value is F, xgz is replaced by . cdr(xzJ, and the

processing of 4.1) is repeated.

If Py contains rvy, the processing of 4.2) is performed.

4.2) A conditional expression is made up. Its predicate
parts and value parts consist of the predicate parts pj and
value parts v:j of xz which have been subjected to processing

of 5).

34[Xn? Ylg; celg; cl'y; ag; a6]

= listn (COND; list afﬁsfpi; rlyi clp ol'pg) g
a6]; ﬁsfvi; rlr; clg; cl'y; ag; a6jj; ooy 1list 2
[35[Pk; rlz; clgp; cl'y; ag;i 2gl; ﬁs[vk; Tl,; clg;
cl'; ag; acll

Here, n = k - i + 1, and B5 indicates processing by 5).
5) Here, the predicate part containing rvp, and the
predicate parts and value parts appearing to the right of

the foregoing are processed. This processing is represented

in the following terms:

Bsfformn; rlg; clg; ¢l'y; s 36]

5.1) In cases when form does not contain rv,:

5.1.1) « If formy is an atom, QUOTE is attached to its value.

- 33 —

5.1.2) If car(form,) is QUOTE, it is left unmodified.

5.1.3) If formy is a conditional expression, it is

processed by 5.2).

5.1.4) Otherwise, the elements of cdr[formn] are sub-

jected to the processing of 5).

5.2) VWhen formy; is a conditional expression. The
following is posited: cdr (form,) = xp = ((pl, vl), ceey

(pyr vy)).

5.2.1) When the leftmost predicate part of Xg, for
instance P does not contain rvg, Py is evaluated by using
cl'yz. If its value is T, the corresponding value part A
is subjected to processing by 5).

If the value is F, x5 is replaced by cdr(x,), and
processing is performed by 5.2.1).

If ps contains rv,, the processing in 4.2) is performed.
The processing 5.2) is one which performs processing of 5)
instead of giving the processing of 3) to the value part
corresponding to the predicate part which first becomes T

in 4.1).

5.3) Otherwise, form, is subjected to the processing of

3).

- %4 —

Partial evaluation algorithm @, was described informally
in terms of the operations 1) through 5) given above. As
for the partial prodesses concerning which it is not known
whether evaluation is actually possible or not, that is the
partial processes succeeding a judgmgnt containing rv, if
these processes do not contain rv, they are not evaluated,
but the values of cv are merely assigned (Process 5.1).
However, if such a partial process is a conditional expres-
sion, the predicate part is evaluated and the value part is
extracted. After this, the values are assigned to the cv-
contained in the value part (Process 5.2.1). If the partial
process cdntains rv, partial evaluation is performed by |
applying 33 recursively (Process 5.3).

Process 5.1 satisfies requirement d2 in Chapter 2,
which called for avoidance of wasteful evaluations.

However, on the other hand, it goes against requirement dl,
which c¢alls for the evaluation of portions where evaluation.
is possible even when the value of rv is unknown. Process
5.3 satisfies requirement dl but goes against requirement
d2. Process 5.2.1 goes against requirement d2 in that the
predicate part is evaluated, but it goes against requirement
di in that the value part is not evaluated. |

The problem is a gquestion of balancing the different
requirements against each other, that is, of déciding

exactly how much welght is to be given to each requirement

- %5 -

in any given case. In al wasteful computation is avoided
whenever possible, but those judgments are executed which
can be performed even when the value of rv is unknown.

In this way, an attempt is made to reduce the number of
Judgments contained in the computation processes obtained

by means of partial evaluation.

2.3 Halting Problem of al
As is obvious from Processes 1.1 and 3.1 (i.e. al
contains apply and eval), the halting problem (i.e.,
whether o will or will not terminate with respect to any
given argument) is undecidable. Even though val (7; clp;
cl'ys rlg; rl's) should terminate, it does not necessarily
Tollow that ay [(#; rlp; clp; cl'p) will likewise terminate.
This is so in view of processes 4.2, 5.2 and 5.%. On the
contrary, even though val (m; clp; cl'y; rlg; rl'y) does
not terminate, it is clear from processes 1.3 and 3.5 that

a, (m; rl,; clyp; cl'y) may sometimes terminate.

- 36 —

4 Compiler Generation from Interpreter

The interpreter of the programming language is a
computation process in which a sentence Dbelonging to the
language is regarded as a representation of the computation
process. Values of variables (the so-called state vectors
(4)) are assigned, and the sentence is evaluatgd. Here let
us represent the interpreter by int and the variables by
L, X, Y, ..., ¥n. These variables indicate the following:

L : Sentence belonging to the language (program).

X ¢ List of walues of variables contained in the
sentence (state vector).

7, ..., In : States of the tagles or stacks used to
analyze the sentence syntax or to evalu@te the
sentence. ?

if the values of L, X, ¥, ..., Yn are £, X;iyl, voay

Y,» respectively, then the evaluation of sentence £ by means
|
of int will be: ‘

apply(int; 1list(2; x; Y15 eees Y s NIL)

Some of the variables among Yl’ «e., In indicate the
states of tables and stacks which are used only when analyz-
ing sentence (program) syntax. These are represented as
Ti1s eees Yip' and the remaining variables are represented

as Yiq, .., Ys,. The following are posited:
J1 ja

- 37 -

¢ling = (I, Y49, ..., Yip)
cllyg = 1188025 yiq5 o.n; Yip J
rling = (X, Y359, .0, ¥iq)
rllipg = stlx; yi15 ... y:iqJ

|
Then, from the definition of val in Chapter 2, we| obtain:

apply(int; list(e; x; Y13 «+es ¥y J; NILJ

= val(int; clipgs el'ynt; Tlings rl'i,¢) ~=—= (3)

Therefore, if int is partially evaluated at cl';p,¢ with

respect to Clint’ the following is obtained:

3 . - . t . 1 .
apply[al[lnt, rlint’ Clint’ cl intj’ rl int’?

NIL J 5 apply(int; list(e; x; I3 wee; yn]; NIL) - (4)

When o has been described in terms of a LISP m-expression,
and when this has been transformed into an S-expression
(for the algorithm for this transformation, refer to
Reference 1), the result is posited as al*. The variables

1
The following are posited:

of @, % are to be A, A,, A, and A, (see Appendix 1).
1 2 3 4

Clal* = (Al’ A29 AB)

cl'y *
sl

list(int; rlipgi 1y)

-

- 38 -

I'la * (A

5)
rl'a. * = l:'Lst[c]_'int)

Then,

al[int; rlint; clirl’c; Cl'intj
= apply[dl*; list (int; rl e C1yas cl'int]; NIL]
(from the definition of_al*)
= val (@ *; 01al*;01'a1*; rlal*; rlél*J
(from the definition of val)

= apply (e, @ *; Tla % Olaxi Ol wJi rllg 3 NILJ

1*
(from.the definition of al)
Then let us adopt the following definition:
*
con” =y (@5 o us Slagi apx) | - (9)

(Let it be noted that the value of the right side of
Equation (5) is an S-expression.)

In this case, the following equation will apply:
ot e . . 1 =
al[lnt, rlint,‘clint, cl int] W apply
*
(comp ; list [cl'int]; NIL) e (6)

From (4) énd (6), the following will be obtained:

- 39 -

apply(apply(comp™; list[ol'int]; NIL J; rl'. s

NIL Jw apply(int; list(e; x; Fi5 eeei yn] ; NIL) —-= (7)

On account of the nature of @, and of Equation (6), in
the evaluation of comp* computations concerning cl'int are
performed; that is, the sentence (program) is subjected to
syntax analysis. The computation process obtained by the
evaluation of comp* satisfies Equation (7). Therefore,
comp*'can be regarded as the compiler performing syntax
analysis of the program and translating it into the computa—-
tion process. (Refer to Reference 4 for the equation
indicating the correctness of the compiler. apply corre-
sponds to machine.)

From the preceding discussion, the following character-
istics are obtained concerning the relationship between the

compiler and the interpreter.

1) The compiler is generated by giving the interpreters

int, rlint and c:_'Lj_nJG and partially evaluating the partial

evaluation algorithm al*' (From Equation 5)

2) When the compiled computation process is evaluated,
computations concerniﬁg rl'int are performed, and computa-

tions concerning cl! that is syntax analysis of the

int’
program, are either not performed at all, or are very few,
if performed at all. Therefore, when performing iFerative
o

i
\
]
!

- 40 -

computations with a fixed cl'y ¢ (that is, with a fixed
program)- and varying rl'int alone, or when iterations such.
as loops or recursive calls occur due to the execution of
the program, there are many cases in which it is more
advantageous to execute the program after first compiling.
However, in cases when iterative compﬁtations are not
performed, and when the program does not include any
iterations such as loops or recursive calls, it is more
advantageous to perform evaluation with the interpreter
rather than to execute the program after compiling. (From

Equation 7)

3) Even when the interpreter jint, Clint’ and rlint are
given, it is not necessarily true that the compiler can be
generated by using a . This is so because the right side
of Bquation (5) is not necessarily defined (i.e. @, does not
always terminate) with respect to all cl'al*.

In view of characteristic 3), the following problem
arisés: For interpreters of what language can compilers be
made up by means of partial evaluation? Using the LISP
system for HITAC 5020, we ascertained that compilers for a
simple ALGOL-like language having assignment statements,
conditional statements, go to statemenﬁs, and block structures
could be made by this method. (See Appendix 2.) However,
this question will not be dealt with here in any further

detail.

- 4] -

5 Conclusion

Partial evaluation of the computation processes as
described in this paper is a new theory concerning
computation methods. It is not asg yet sufficiently
formulated and has not yet emerged from the stage of an
idea. The tasks left for the future are the formulation
.and application of this theory.

Formulation ought to be carried out mathematiéally as

a branch of the science of computation. Formulati¢n

includes the formglisms for describing computation jand

storage as well as the problem of equivalence of cdmputation.

As for applications, it is anticipated that the theory
is capable of wide application %o information processing in
general on the basis of partial information. The first
example is that taken up in this paper, the method of
compiler generation, which can be applied to compiler-
compiler.

It is thought that formulation and application can be
carried out on the basis of the idea described in this
paper.

In conclusion, the writer respectfully expresses his
gratitude to Mr. Kazuma Yoshimura of the Central Research
Laboratory, HITACHI, LTD., who kindly discussed this
research from its earliest stages and pointed out a number

of errors. .The writer also thanks Dr. Shozo Shimada, of

- 42 -

the same Laboratory, who took an interest in this research

and provided the writer with helpful suggestions.

- 43 -

References

1) McCarthy, J., et al., LISP 1.5 Programmer's Manual,

M.I.T. Press, Cambridge, Massachusetts, 1962.

2) Futamura, Y., Concerning induction for proving
computation processes, unpublished.

%) McCarthy, Jo, A baéis for a mathematical theory of

computation, in Computer Programming and Formal Systems,

North-Holland, Amsterdam, 1963, 33-70.
4) McCarthy, J., Towards a mathematical science of

computation, Proc. IFIP Congr. 62, North-Holland,

Amsterdam, 1962, 21-28,

- 44 -

Appendix 1. Formal Description of ay

The partial evaluation algorithm a , which was described
informally in Chapter 3, is here described using the LISP
m-expression. Functions f and Bl described below correspond
to operation 1 in Chapter 3, and 82, 53, 84 and 55 each
correspond to operation 2, 3, 4, and 5, respectively. The
other auxiliary functions, except those which are trivial,
have been annotated.

nrv[al; a2] is a predicate taking value T when form ay
does not contain rv, that is the element of oY and taking H

value F when form aq does contain rv.

nrv(a,; a,]

= (atom(a;] »not(member(a,; a5]];
eq(ear(a,]); QUOTE]J—T;
eq(car(a;); COND)-nrvl(cdr(a,); a,l;
T — nrv2(cdr(a,]; a,])
nrvl(x; 2,

= (null (x])—7T;
and(nrv(caar(x]; az]; nrv(cadar (xJ;
a2j]m+nrvl[cdr[x]; as J;
T— NIL)
nrv2(x; as)

= [Il'llll[X] —rT;

. nrv[car[x];‘a2]~+nrv2[cdr[Xj; a5 J

- 45 -

—
—

The

T~ NIL)

aj(a; ay; az; &, J=p(ay; ays as; a,; NIL; NIL]
Blays as; 835 845 ag; ag]

(null(e,]) - 1ist3(LAMBDA; NIL; 1ist2(QUOTE;
g[al; NIL; a3; a4; NIL; a5]jj;

atom[al] —vﬁ[eval[al; 35]; 85 Bzi 8,5 8g; a6];
eq[car[al]; LAMBDA.]—»Bl[stk[al; axj a6];
gensym(J; a1; a3 as; 8,5 ag; agl |
eq[car[alj; LABELL]“’B[caddr[alj; 85 8zi 8,3
append[listl[cons[cadr[alj; caddr[al]]];

ag Ji agl)

name of the value of f is generated by gensym ([).

B.(x; ¥;5 ag; 855 8z 845 agi ag)
(null(x]) = 1ist3(LABEL; y; Bg[al; 853 833 8,3 ag;
cons[cons[cons[al; a3]; listl[cons[a4; y11J;

2 105

null[assoc[a4; cdr(x))) = 1list3(LABEL;

V3 32[al; =P a3; ay ag; cons(append (x; listl(cons
(ays ¥31); delete(x; ag))l;

T~ cdr[assoc[a4; edr (x])])

delete(x; y)

(null(y) - NIL;

eq(x; car(y)) —» cdr(y];

T — cons(car(y); delete(x; Car[Y]J]J

- 46 -

stk[al; 8 a6] = assoc[cons[al; a3]; a6]

The structure of a6 wlll be as follows

Uy N

Uy |ds G| Y

Bolas ays asgi a5 ags ag)
= 1list3[LAMBDA; 8, /33 lcaddr [al] P oAy a3‘; 83 35;' a6jj
% fal; 8o 8z3 8,5 ag; a6]
(nrv [al; a2] —1ist2 [QUOTE; eval [al; pairlis

lags a5 ag)]s
member[al; agJ“’"al;
or 5(eq(car(a;); CARJ;
eq[car[alj; CDR J;
eq[oar[al]; CONS J;
eq(car(a, J; EQJ;
eq[ca‘r[al]; ATOM J; — cons [car[al];
.rlist[cdr[al]; 855 &z3 845 ag; a6]];
eq(car(a J; COND) “’54[cdr[al]; 853 833 8,3
as; agJ;
eq [caaxr(al] ; LAMBDA J— cons (src(ecar [al] ;

cadar[al]; cdr[al]; ayi 8z 8,3 agi 8g; a5];

-

- 47 -

Where,

rlist[rlistl[cdr[alj; as);i a,; axi 8,5 a; a6]];
eq(caar(a,]); LABEL }— cons(src{caddar

(ayl; cadaddar(aqJ; cdr[alj; 8, 853 a,; append

[list].[cons[oadar[al]; caddar (a3}]; agli ag;

a5]; rlist[rlist].[cdr[al]; a,); a

8gl)ls
atom[car[al]]-» Bsfcons[eval[car[al]; a5];

ot 33; 34; 35;

cdr(a,] J; 8y3 8y 8,5 ag; ac]]

or 5[X1; X553 eee; Xg J= or [xl; Xo5 eee; x5].

As for rlist (x; B3 833 8,3 8g; 36], a list will be

compiled having as its elements the elements of list x to

which 33 has been applied.

rliist(x; 8,5 85 845 ag; a6j

= (nuw11(x) — NIL;

T — Cons[33[car[xj; api 8zi ay; ag; a6];
rlist[cdr[k]; as; a3; a4; 35; a6J]]

As for rlistl (x; aej, a list will be compiled con-

sisting only of elements from list x which contain rv

(that is, elements of a

2)'

rlisty (x; 2,]
(null(x] - NIL;

-nrv (car(x); a,) rlistl[cdrtxj; a, Ji

- 48 -

T — cons(car(x); rlist,(cdr(x); a,J]])

As for src(x; y; z; 8s; a3; CYR a5; ac; a7], first the
Clx’ cl'X and rlX relating the A expression x are compiled.

Next, x is processed by 8.

stelx; ¥; 25 ay; 83} 8,7 8g; 8gi aq) _
= B(x; rll[b; V3 azj; cll[z; V3 32]; evlis(clist
(z; a2]; pairlis[aB; 2,3 a7]]; ac a6]
As for rly (z; y; a2] a& list will be compiled congist-

ing only of elements of y corresponding to elements of z

containing elements of 8¢

rli(z; y; a,)
(null(z) - NIL;

]

nrv(car(z); a,) = Tll[CdT[éJ; cdr(y); a,J
T — cons(car(y); rl,(cdr(z]; cdr(y); a2]J]

As for cll (z; ¥; a2] a list will be compiled consist-
ing only of elements of y corresponding to elements of z not

containing elements of‘az.

éll[z; Y3 a2]
= (null(z) — NIL;
nrv(car (z); a2]-* cons(car(y); cll[odr[z];
cdr(yl; a,)];
T cllﬂcdr[z]; cdr(yJ; a2]]

- 49 -

As for clist(z; a2j a list will be compiled consisting

only of elements of 2z not containing elements of 85e

clist(z; a,]

(null(z} — NIL;

nrv(car (z]; ay)— cons(car (z); clist(cdr

(z3; a,)J;

T~ clist(ecdr(z]); a,)]

By x5 ay5 ag; ay; ags ag)

(nrv(caar (xJ; a2] — (eval(caar (x); pairlis

[a3; 8,5 85]]—»ﬁ3[cadar[x]; ay; 83 8,3 &c; aéj; "
T— 34[cdr[xj; 8y} 8x5 8,5 ag; 36]:“

T— cons[COND; condl[x; 853 833 8,7 ag; a6]]]
condl[x; 853 35; a4; a5; 8‘6] ‘
(null(edr(x)) — list 1 list2 (Bs(caar(x]); ag;

a3 843 Ag; ag Ji 35[cadar[x]; 8y 835 8,5 ag; a6]]];
T — cons(list?2 [35[caar[x]; 853 833 8,5 85; a6];
B5[cadar[x]; 8,3 837 8,5 ag; a6]]; condl[cdr[}c];
855 8z3 845 8gi g]]]

35[}(; 8o azj 8,3 ag; a6]

= (orv (x5 ay) -

(atom[x} — list2 [QUOTE; eval(x; pairlis[aB;
843 353115
eqlcar (x); QUOTE] - x;

eq{car(x]); COND] = cond2[cdr (x]; ay; asz;

8,5 83 8g)

- 50 -

T — cons(car(x]); ceviis(cdr(x); 853 8z}
8,5 ag; ag 1))
eq(car(x]; COND) — cond,(cdr (xJ; as5 8z
a,; 853 ag)
T ~’63[x; ass a3; a4; a5; a6]]

cond2[y; 855 833 8,5 85} a6]

]

(nrv(caar(¥y]; a,] — (evallcaar(y); pairlis
[aB; ay; a5jj-+35[cadar[yj; Bp} 8 a43 ag; a6j;
T — copdz[cdr[y];'a2; 8z} 8,3 ag; a6]];

i
T — cons(COND; condl[y; 2} azi 843 asﬂ

|
| :
é ag JJ)

As for cevlis(y; ayi 8z 843 8g; a6], a list will be
compiled having as its elements the elements of list y to

which 35 has been applied.

cevlis(y; 2,3 a3; a4; a5; a6]

= (null (y) — NIL;
T — cons[35[carﬁy]; ayi 8z5 845 8c3 36];
ceviis(cdr(y]; 8,5 83 83 a5 a6]]]

- 51 -

Appendix 2. Example of Compiler Generation

A simple ALGOL-1like language containing assignment
statements, conditional statements, go to statements, and
block structures was described by the interpreter. ILISP
for HITAC 5020 computer was actually used to ascertain that
it is possible to make up compilers from such interpreters
by the method described in Chapter 4, using the partial

|

evaluation algorithm . In other words, it was;asoertained

|

that

*

will terminate. The description here pertains to progf*,
the interpreter used at that time.

The program featuresﬂin LISP 1.5 are the functions
which make it possible to write ALGOL-like programs contain—
ing assignment statements, conditional statements, go to
statements, and block structures. The functions of the
program features were imposed restrictions on the following

two points, and progf* was used as the interpreter.

1) SETQ, SET, RETURN and PROG (block) can be written
only as the top level of the program or as the value part of

the top-level conditional statement.

2) It is impossible to go outside of the block by a go to

- 52 =

statement.
Even in this case, programs of the following type can

be written.

((U V)
(SETQ U W)

L; (COND ((NULL U) (RETURN V)))
(SETQ V (CONS (CAR U) V))
(SETQ U (CIR U))

(GO Ly))

The program is represented as X, and a is used to
represent the list having as its elements the dotted pairs
of variables and their values. When the program given above

is taken as x, if values (4, B, C) are given to N, then

a = ((N'(A’ B; C)))-

progf(x; a] = pfeval(ecdr(x]; ppair{car
(x]J; al; golist(cdr(x); NIL)).

Where, in ppair(y; al, the dotted pairs consisting of the
elements in list y and NIL are put in list a. In the case

of the example given above,

ppair(car(x); a) = ((U.NIL)(V.NIL)
(N-(4, B, C))).

In gdélist(y; g), the dotted pairs of the labels (top

- 5% _

level atoms) appearing in list v of the statements and the
subsequently ensuing lists of the statements are put in

list g.

pfeval(x; a; g)
= (null(x]) - NIL;
atom{car(x]} — pfeval (cdr(x); a; g);
eq(caar(x); GO) — pfeval(cdr (assoc[cadar
&J; gl); a5 g);
eqcaar(x}; COND) — pfcond (cons(cdar (x);
cdr (x]J); a; gJ; |
eq(caar(x); SETQ:]-»progz[rplacd[as%oc
(cadar (x); al; eval(caddar(x]; a)J; pfev%l
(car(x); a; g));

. eq(caar(x); SET) —»progz[rplacd[assob
(eval (cadar (x]); a); a); eval(caddar(x]; a));
pfeval(cdr (x]); a; g));

eqcaar (xJ; RETURN) — eval(cadar(x); aJ;
eq(caar (x]); PROG) — prog,(progfcdar
(x); al; pfevalledr(x); a; g));
T —»progzlbval[car[x]; a J; pfeval (cdr
(x]; a; g))]

In pfeond(y; a; gJ, the top level conditional exXpression

of the program is processed.

-

- 54 —

pfeond(y; a; g)
(null(car(y)) — pfeval(cdr(y); a; g);

eval {caaar(y); a] —

(eq(caadaar(y); GO) — pfeval(cdr(assoc
(cadadaar(y); g)); a; g);

(eq(caadaar(y); SETQ] — progz[rplacd
(assoc(cadadaar(y); a); evallcaddadaar(y); al)l;
pfeval(cdr(y); a; 8)J;

eq (caadaar(y); SET) — progefrplacd
(assocleval (cadadaar(y); a); a); eval[caddadaaf
(v); a)l); pfeval(edr(y); a; g));

eq caadaar(y); RETURN] — eval[cadadaar
(v]; al; |

eq (caadaar(y); PROG} — prog2[progf
(cdadaar(y); a); pfevallcar(y); a; g));

T— progZEeval[cadaar[y]; a); pfeval
(edr(y); a; gl));

T — pfeond(cons (cdar (y); cdr(yl); a; g))

The progf in the m-expression given above, when trans-
*
formed into an S-expression, is progf .

The following are posited:

I‘lal* = (A4)

-Clal* = (Al, A25 AB)

cl'al* = list(progt™; (4); (X))

It was ascertained that the partial evaluation of al*

terminated.

- 56 -

