;“ Higher-Order and Symbolic Computation 12, 377-380 (1999)
’. © 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Partial Evaluation of Computation Process,
Revisited

YOSHIHIKO FUTAMURA futamura@futamura.info.waseda.ac.jp
Department of Information and Computer Science, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokvo, Japan
169-8555

The original paper [3] of this reproduction is a translation of a Japanese paper published
in Vol. 54-C, No. 8 of Transactions of the Institute of Electronics and Communication
Engineers of Japan, pp. 721-728, in August 1971. In this reprint, I have corrected a few
typos, and refined some sentences to make them more readable. Here is a FAQ list about
partial evaluation and myself.

Ql:

Al:

Q2:

A2:

How did the idea of self-application come to you?

After graduating from the Department of Mathematics at Hokkaido University (in
Sapporo) in 1965, I engaged in developing an interpreter and a compiler for Lisp 1.5 at
Hitachi Central Research Laboratory. The work was done based only on McCarthy’s
manual [12]. When I was implementing the compiler, I realized that I was just looking
at the interpreter written in the manual. Then the idea that a compiler could be gen-
erated from an interpreter came to me. I think this idea is fundamental. Other results
such as partial evaluation and self-application follow the idea with good luck.

Did you really implement a self-applicable partial evaluator in 1971 and how efficient
was it?

I implemented a partial evaluator «; in about 100 lines of Lisp 1.5. By design, its
implementation language was a subset of its input language, and therefore «; was
self-applicable in principle. In practice, however, self-applying «; was somewhat un-
satisfying and even problematic. For example, and as witnessed by the residual code
at the end of Section 5, «; did not pass Neil Jones’s optimality test [9], which says that
specializing an interpreter should remove its interpretive overhead completely. But of
course, that optimality test was developed much later.

At the time, I was mainly struggling with issues such as ensuring termination and
treating static side effects correctly—issues that to the best of my knowledge are still
generally unsolved today, independently of self-application. In that sense, «| was
overly ambitious. Also, «; was an online partial evaluator, which in hindsight did not
help for self-application, though of course nobody realized that at the time. And in-
deed it took nearly 15 years and a new partial-evaluation technology (the so-called
“offline” partial evaluation) before an efficient self-applicable partial evaluator could



378

Q3:

A3:

Q4

A4

Qs:

A5:

Qo6:

AOG:

Q7:

AT:

FUTAMURA

see the light of day, in the Mix project at DIKU [10, 11]. At that occasion, Harald
Sendergaard compared triple self-application to driving a truck with two trailers in
reverse. | certainly concur.

Where and when did the term “Futamura projection” become in use?

In 1980, in Vol. 12, No. 14 of the Japanese journal Bir, Andrei Ershov wrote an ar-
ticle entitled “Futamura Projections.” However, I believe, the term was first used in
English at PEMC’87, and documented in its proceedings [13]. My paper (i.e., this
reprint) does not deal with the third Futamura Projection which shows that o (o, o) is a
compiler-compiler. Actually, I did not realize the importance of this fact when I wrote
“An Approach to a Compiler-Compiler” and thus I only reported the third projection
in 1972 and 1973, while visiting Harvard University [4, 5]. (The introduction to [5] is
reproduced in appendix.)

What is the relationship between partial evaluation and program transformation?

Partial evaluation is a kind of program transformation. The partial evaluator oy
(Section 4 (2) and (5)) implements what Burstall and Darlington have later called
“folding” and “unfolding™ [1].

Is a generating extension more efficient than a partial evaluator?

Given a partial evaluator « and a program f, a(a, f) yields the generating extension
of f [13]. The term “generating extension” is due to Ershov [2]. As a specialized par-
tial evaluator, a generating extension is usually more efficient than a general-purpose
partial evaluator.

Is there a Fourth Futamura Projection?

If you substitute « for inf in the third projection, you obtain « (¢, «){(«) = a(a, a) [6].
You may call this the fourth projection. At DIKU, where « is called “mix” after Ershov,
I hear that the Fourth projection is nicknamed “the mixpoint” (the nickname is actually
due to Peter Sestoft). The existence of a Fifth projection is hardly imaginable since
there is nothing left to specialize with respect to.

How did you generalize partial evaluation?

The partial evaluator described in this reprint uses only information given as actual
parameters, i.e., input data. We proposed a method, called GPC (Generalized Partial
Computation), that also exploits the logical structure of a source program, This makes
it possible to determine some a priori unknown variables in source programs and to
resolve conditionals, automatically [7, 8]. At Waseda University, the implementation
of GPC is pursued under the support of the Research for the Future Program of the
Japan Society for the Promotion of Science (JSPS).



PARTIAL EVALUATION OF COMPUTATION PROCESS, REVISITED 379

Q8: Besides the Futamura projections, what else did you contribute to computer science?

A8: T have developed a Problem Analysis Diagram (PAD) which is an integrated method
for program development. Around a diagrammatic method for structuring programs,
PAD offers systematic design, coding and testing procedures. It has been included
in an international standard in 1986 (ISO8631) and in a Chinese national standard in
1990 (GB13502).

Q9: What are you working on nowadays?

A9: Beside partial evaluation and program transformation, I am now working on program-
ming methodology and on the generation of test data.

Acknowledgments

I am very grateful for the encouragement and stimulation received from many researchers
including the late Andrei Ershov, K. Fuchi, Tom Cheatham, Valentin Turchin, Neil Jones,
Dines Bjgrner and Erik Sandewall. Thanks are also due to the editors of this journal for
their enormous support for reproducing my old paper and writing this introduction.

Notes: Extract from the introduction of “EL1 Partial Evaluator (Progress Report)”,
January 23, 1973

The aim of this report is to provide information concerning work done, problems encountered, and difficulties
overcome while the project for the EL1 partial evaluator has been underway since October, 1972.
The goal of the project is to implement a partial evaluator o for EL1 which has the properties described below.
« is a partial evaluator such that

alint, s)(r) = int(s, r) (1
for an arbitrary program inf and its arguments s and . We can derive the following equations from 1.

alint, s)(r) ala, int)(s)(r) 2)

alo, o) (in) (s)(r) 3)

i

i

If we consider int, s, and r as an interpreter, a source program and runtime data respectively, then a(int, s),
a(w, int), and a(a, o) can be considered as an object program, a compiler, and a compiler gencrator, respectively.
Tn order to be useful, « has to have the following two properties.

1. o should evaluate as many portions of programs (e.g., int and «) as possible in order (o save time during the
final evaluation.

2. « should avoid working on portions of the program not needed in the final evaluation in order to save partial-
evaluation time.

References

1. Burstall, R. and Darlington, J. A transformation system for developing recursive programs. JACM 24(1)
(1977) 44-67.



380 FUTAMURA

L2

[N

. Ershov, A. On the essence of compilation. In Formal Description of Programming Concepts, Neuhold, E.

(Ed.). North-Holland, 1978, 391-420.

. Futamura, Y. Partial evaluation of computation process—an approach to a compiler-compiler. Svsiems

Computers Controls 2(5) (1971) 45-50.

. Fuiamura, Y. EL1 Partial Evaluator. Term paper manuscript, AM260, DEAP, Harvard University, 1972.
. Futamura, Y. EL1 Partial Evaluator (Progress Report). Center for Research in Computing Technology, Harvard

University, January 1973.

. Futamura, Y. Partial computation of programs. In RIMS Symposia on Software Science and Engineering, E.

Goto et al. (Ed.). LNCS 147, Springer, 1982.

. Futamura, Y. and Nogi, K. Program Transformation Based on Generalized Partial Computation. US-Patent

5241678, August 31, 1993.

. Futamura, Y., Nogi, K., and Takano, A. Essencc of generalized partial computation. Theoretical Computer

Science 90 (1991) 61-79.

. Jones, N.D., Gomard, C.K., aud Sestoft, P. Partial Evaluation and Automatic Program Generation, Prentice

Hall International Series in Computer Science. Prentice-Hall, 1993.

. Tones, N.D., Sestoft, P., and Sgndergaard, H. An experiment in partial evaluation: the generation of a compiler

generator. In Rewriting Techniques and Applications, Jouannaud, J.-P. (Ed.). Lecture Notes in Computer
Science, Vol. 202, Springer-Verlag, 1985, pp. 124-140,

. Jones, N.D., Sestoft, P., and Se¢ndergaard, H. MIX: A self-applicable partial evaluator for experiments in

compiler generation. Lisp and Symbolic Compuration 2(1) (1989) 9-50.

. McCarthy, I., Abrahams, P.W., Edwards, D.J., Hart, T.P., and Levin, M.I. LISP 1.5 Programmer’s Manual.

MIT Press, 1962,

. Morgensen, T. and Holst, K. Terminology. New Generation Computing 6 (1988) 303-307.



