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SUMMARY

This paper reports the reladonship between
formal description of sernantics (i.:2., inter-
preter) of a prograraming language and an actual
compiler. The paper a:so describes a method

"to automatically generate an actual compiler

from a formal description which is, in some-
sense, the partial evaluation of a computation
process.

The compiler-compiler inspiredby this method
differs from conventional ones in that the com-
piler-compiler based on our method can describe
an evaluation procedure (interpreter) in defining
the semantics of a programming language, while
the cenventional one describes a translation
process.

1. Introduction

It is kvown that there are two methods to for-
mally describe the samantics (meaning) of pro-
gramming languages. One of them is to describe
the procedure by which the langnage o be defined
is translated into another language whose seman-
tics are already known; i.e., 2 description of a
tranaslator. The other is to describe a procedure
evaluating the results of a statement belonging
to the language to be defined (a source program);
i.e., a description of an interpreter.’

In a conventional compiler-compiler, the
description of a translator is used to describe
the semantics of a programming language. That
is, the users of a conventional compiler-com-
piler have to write the translation program in
terms of a translator description language in
defining the semantics of a programming language.

The difficulty in writing a translator has been
pointed out by Feldman [1] as follows:
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The large bold-line block ig the generated com-
piler, The object language of this compiler is a
semantic metalanguage in which an interpreter
is described, An object program is translated .
into a machine language by the metacompiler.

"One of the most difficult concepts in trans-
lator writing is the distinction between actions
done at translate time and those done at run time,
Anyone who has masteyed this difference has
taken the basic step towards gaining an under-
standing of computer languages. "

In describiug the semantics of a programming
language by an interpreter it is not necessary to
set up a distinction between those actions. There-
fore, describing an interpreter seems easier than
describing a translator. Actually, description
by an interpreter is implicitly used at many
places in the report on ALGOL 60 {2] and in man~
uals of many programming languages. The inter-
preters of such complex languages as ALGOL 60
and PL/T also have been described formally (3, 4].

However, for reasons described in Sect. 3, a
so~called interpreter is often not as efficient as
a so-called compiler in language processing.




This paper describes an algorithm to automati-
cally transform an interpreter to a compiier and
its application in a compiler-compiler. The
algorithm is a sort of partial evaluation proce-
dure (see Fig. 1). :

Partial evaluation of a computation process is
by no means a new concept [5]. Even in program-
ming languages, POP-2 [6] implies a somewhat
similar concept called ""partial application. "
Nevertheless, it is the author's belief that this
paper is the first instance in which the concept
is applied in a compiler-compiler. What kind
of partizl evaluation algorithm is applicable to
a compiler-compiler? It is the purpose of this
paper to probe the properties of that algorithm.

‘2. Partial Evaluation

The following transformation is called a par-
tial evaluation of a computation process 7 with
respect to variables ¢y, +-+, cp at the values
c1',***,C¢m'. 'In a computation process g con-
taining m+n variables ¢y,+--,¢m, r1, ', Tn,
evaluate the portions of 7 which can be evaluated
using only the values ¢q',++-,cm' assigned to
variables cy,--+,Cm, respectively, and con-
stants contained in 7. The portions which cannot
he evaluated unless the values of the remaining
variables are given are left intact. Thus, ris
transformed into a computation process having
n variables. When the computation process
thus obtained is evaluated for values ry',---,
rp' assigned to variables ry,.--, ey, respec-
tively, its result is equivalent to the result of
evaluation of r for the values ¢{',-+-,Cm', 7',
«+-,Tq' given to variables ¢3,+--,Cm, T1,°"",
rp, respectively.!" We denote this transforma-
tioa by the equation
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(1)

We call o the "partial evaluation algorithm, "
ci,*++*,Cm the "partial evaluation variables, "
and ry, ..., Ty the "remaining variables, " respec-
tively. We may refer to the usual evaluation as
a total evaluation as opposed to a partial evalu-
ation.

Example. Consider the evaluation of a compu-
tation process given by the functionf(z, y)=zs(z+z+
+z+y+1)+ysy with the valuesx =1, y =1, 2,

e

When we evaluate f(1,y) for each value of v,
i.e., when we execute

z:=L; for y: =1 step 1 until / do f[=, y].
=zs(zsx+z+y+)tysy;

3j multiplications and 4j additions are performed.-
Representing the times elapsed in addition and
multiplication by a and m respectively, the

above computation requires about (4a+3m)j.
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If we have a(f, 1)(y)=1=+@3+y)+y+y by partial
evaluation of f(x,y) with respect to x =1, the
elapsed time of the partial evaluation, e.g., k
is more than 2a+m, i.e., k > 2a+m (because
the partial evaluation involves the evaluation
of x*x+x+1).

If we execute

for y: =1 step 1 until [ do f[1, y]: =123+
y)+yry;

a computation time of about (2a+2m)j is required.

Therefore, when the relation
k+(2a+2m) << (4<:+3 myl -Z—-Z-ﬁ_—"-l-<l

holds, the partial evaluation gives a faster com-

putation.

3. Generation of a Compiler from an
Interpreter -

An interpreter of a programming language is-
a computation process containing-variables. A-
sentence (source program) of the programming
language is substituted for one of the variables
asg a value. Variables contained in an inter-
preter, e.g., int, are classified into two groups
as follows. All variables to which a source pro—
gram and information needed for syntax analysis
and semantic analysis are given as values are
classified as a group s. The other variables are
classified as a group r. Here, int is assumed
to have two variables s and r. The result of the
partial evaluation of the interpreter with respect
to s at a given value s' is a (int, s") (r). With r!
assigned to r as a value, the following relation
is derived from Eq. (1)

(2

ine(s’, rYy=alint, $I()

If all the computations concerning s' have been
performed at partial evaluation time, the gener-
ated computation process a(int,s') does not con-
tain the computation process for syntax and
semantic analysis of the source program s'.
Moreover, it brings about the same result as
int(s’, r') when it is evaluated for the data r'.

"Therefore, a(int)(s’) can be viewed as a compu-

tation process which is translated from s' into
the semantic metalanguage describing the inter-
preter. Namely, it can be regarded as an object
program corresponding to s'.

If o is partially evaluated with respect to int
on the right side of Eq. (2), the following rela-
tion is derived:

aint, s () =ala, ix)(s) ()

& (¢, int) can be considered to be a compiler be-
cause it generates an object program from s'

operating on it.



Suppose & has the following two properties.

pl. Inpartially evaluating a computation pro-
cess m, « evaluates as many portions of T as pos-
sible which can be evaluated only with constants
and values given to partial evaluation variables.

p2. o« evaluates as few portions of r as pos-
sible which are actually not evaluated when a
generated computation process is evaluated with
the values of remaining variables.

Property pl reduces the computation time of
the process generated by a partial evaluation
when it-is evaluated with the givemvalue of
remaining variables. Property p2 reduces the
computation time. of z partial evaluation.

If a partial evaluation algorithm somehow
possesses both properties pl and p2, it is more
efficient to execute a source progranr ouce com-
piled than to interpret it directly when the
source program contains such iterations as
loops and recursive calls or is iteratively exe-
cuted for many input data..

The-simplest partial evaluation algorithm is
the one which neglects property pl, i.e., the
one which only-substitutes given values for par-
tial evaluation variables.

The algorithm oy considering the prdperty pl
and fitted for-the partial evaluation of an inter-
preter is described in the rest of this section.

For ease of explanation, a computation pro-
cess is represented by a graph such as that in
Fig, 2. In Fig. 2 nodes (o) represent condi-
tional branching points, branches (arrows) rep-
resent subcomputation processes not containing
a branching ooint and a flow of control, and the
leaves (¢) represent the termination points of
the computation process. All nodes and branches
are marked nj and by (a different one is sub-
scripted by a different number), respectively.
Let b denote the entry branch (there may be
more than one entry branch, but we assume that
only one is selected at partial evaluation time)
and let m denote the total number of branches.

o1 determines partial evaluation variables
and the remaining variables at each stage of the
partial evaluation according to the following two
criteria:

(i) Partial evaluation variables of the pre-
ceding stage or constants or variables (or formal
parameters of functions) to which values depend-
ing only on partial evaluation variables of the
preceding stage or constants are assigned (or
given as actual parameters of functions) are
partial evaluation variables.

(ii) ARema.ining variables of the preceding
stage or variables (or formal parameters of
functions) to which values depending on the
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Fig. 2. Graph representation of
- computation process 7 (ny, ---,n7
denote nodes and by, ... ,t15 de~
note branches).

remaining variables of the preceding stage are
assigned (or given as actual parameters of func=-
tions) are remaining variables.

The algorithm o is given by the five opera-
tions below (in the description of the algorithm,
integer variables g, j(1), --+,j(m) and a list
variable L are used).

(1) Set each of g, j(1),+--,j(m) to 1 and set
L to a null. Proceed. to operation (2).

(2) Allocate the first address of a space in
which the result of partial evaluation of bg is
stored and memorize that address. (When the
result is stored in the memory of a computer as
a program the first address is that of the pro-
gram; when the result is written as a graph the
first address is that of a label attached to an-
entry point to a branch.) Namely, o1 enters the
triplet (bg, Sgi(8), a (g)) in list L., where soJ(g)
denotes tge set of oau’s of partial evaluation vari-
ables (at the entry point of the j(g)th entry to bg)
and its values, and ag}(8) denotes the first ad-"
dress of the space in which the product of the
j(g)th partial evaluation of by is generated. Pro-
ceed to operation (3).

(3) Evaluate the portions of bg which can be
evaluated only with partial evaluation variables
and constants, To those portions attach marks
indicating that they have already been evaluated.
Let bi(8) denote the new computation process
generated by this operation (b,J(8) is a new com-
putation process generated from bg, and bg is
left intact). Increment the value of j(g) by 1 and
proceed to operation (4).

(4) I the process next to bg (i.e., the arrow-
head of bg) is a termination symbol (e), stop the
partial evaluamon If the process next to be is
a conditional branching point Dk(1). proceed’ to
(4.1) or (4.2).

(4.1) If nk(j) can be evaluated only with the
values of partial evaluation variables and
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constants, then select one of two branches based
upon the value of ny(j). Let by express the
branch selected. Set the value of g to p and
proceed to operation (5).

(4.2) I ng(i) cannot be evaluated unless the
values of remaining variables are given, then
nk(j) is left intact. Let bp and bg denote two
branches following ny(i). Set the value of g to
p and proceed to operation (5). Next, set the
value of g to q and proceed to operation (5).

(5) Examinre list L to see whether there is a
triplet whose first and second terms coincide
with bg and Sgi(g) respectively.

(5.1) If there is such a triplet transfer con-
trol of the generated computation process to the
position indicated by the third term a X of the
triplet (if a generated computation process is
written on paper, draw an arrow to the place
labeled agX). Stop the partial evaluation.

(5.2) If there is no such triplet, return to
operation (2).

Example 1. Suppose that the conditional
branching points nj, ng and ng can be evaluated
only with partial evaluation variables and con-
stants, and that each evaluation of ny, ng and
ng selects the branch bg, b and by g respec-
tively. Then, 7 is transformed by o as de-
scribed in Fig. 3.

Example 2. Consider the case in which nj
and ng can be evaluated only with partial evalua-
tion variables and constants, and the value of
n3 depends on the values of remaining variables.
Let nj always select branch bg and let ng select
branch bj3 the first time and select branch b2
the second time. Then, 7 is transformed by oy
as described in Fig. 4.

Example 3. In Example 2, if ng invariably
selects b1y, «1 does not always terminate its

Fig. 6. Exam-
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computation and generates such an infinite graph
as described in Fig. 5. However, if ng always
selects b13 simply because the partial evaluation
variables of by cyclically take the same values,
the computation of oy is terminated by operation
(5) and produces such a result as described in
Fig. 6 in the case when the values of partial
evaluation variables of by do not change. In par-
tially evaluating an interpreter with respect to a
source program which contains loops or recur-
sive calls, the above case occurs. Therefore,
operations (2) and (5) are essentially important
for the compiler-compiler method described in
this paper.

Example 4. Let us assume that nj in Fig. 7
depends on the remaining variables. In this case,
if the iterative partial evaluation of process bg
does not produce the same S3¥ more than once,
then an infinite graph will be generated. But in
totally evaluating the process it is possible that,
after b3z has been computed several times, nj
selects bg and the computation will terminate.

If bg does not contain remaining variables but
contains an infinite loop and if nj always selects
bg in total evaluation, then it is a trivial example
of 2 computation process whose total evaluation
terminates but whose partial evaluation does not
terminate.

The evaluation of those portions of a computa~
tion process which are not evaluated at total
evaluation time, as in the last example, can be
avoided by the following procedure. The por-~
tions of a computation process (with the exception
of conditional branching points) for which it is
not known whether they are evaluated at total
evaluation time (i.e., the portions following con~
ditional branching points whose values depend on
the values of remaining variables) are not



evaluated at partial evaluation time, but the val-
ues are only substituted for the remaining vari-
ables. This procedure is necessary not only
for the avoidance of waateful evaluations at par-
tial evaluation time but also to guard against the
printing of erroneous statements and other
troublesome portions of the interpreter which do
not have to be evaluated at partial evaluation
time (e.g., input-output operations).

- We make an exception of conditional branching
points in the foregoing procedure in order to
reduce the number of nodes and branches con-
tained in the resulting computation process of a
partial evaluation by evaluating as many condi-
tional branching points at partial evaluation time
as possible. If the portions of a computation
process that follow conditional branching points
containing remaining variables contain remain-
ing variables, a1 is recursively applied to those
portions. This is based on the idea that because
the portions of a computation process containing
remaining variables often include recursive
calls for an interpreter, it is worthwhile to risk
the partial evaluation of those portions. There-
fore, functions, procedures and pseudo-varia-
bles which do not have to be evaluated at partial.
evaluation time must be marked and must be
handled exceptionally.

However, if we describe an interpreter care-
fully, we can avoid such a meaningless loop as
the one described in Example 4. Therefore,
the desired algorithm can be obtained by modi-
fying c¢1 so that it evaluates all the portions of
a computation process except those marked as
unnecessary to be evaluated at partial evaluation
time.

The partial evaluation algorithm has been
described in the preceding discussion, but the
details thereof have been omitted since they are
quite different in each programming language
describing a computation process.

Example 5. Partial evaluation of the LISP [7]
function append [x;y] defined as

append (x iy} =[null {z]— y ; T—cons (car[z] ;
append [edr (] ¥11)

Therefore,

«, (append; (4, B)]{y]=cons[4; cons (B; y]]
@, (append ; (4, B)1[z]=[null (x]—(4, B);
T—cons{car(z] ; @,[append ; (A, B)(cdr[z]]]

Example 6. Partial evaluation of ALGOL
program.

Let a and b denote lists of integers (i.e.,
integer arrays). a[0] and b[0] contain the length
of each list respectively. afl], a[2], -.-,a[a[0]]
and b(1], b(2],--+,b{b{0]] contain the elements
of the lists. The program (8] concatenating lists
a and b is described below (wherein bigm denotes
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the upper bound of array a).

begin if 4 {0]+5(0]>bigm then goto overfi;
for k: =1 step 1 until 4(0] do
a(k+a[0]] : =hCk}; a (0] 3 =a [0]+5(0];
end

The result of partial evaluation of the above
program with respect to b at b(0] = 2, b{1] = 10,
b{2] = 20 is described below.

begin if a[0]+2>>bigin then goto overfl;
a{l+a(0]]=10;
a (2+a{0]]=20;
a{0}=a (0] +2;
end

4, Discussion

(a) What is the criterion for the possibility
of generating a compiler from an interpreter,
i.e., a nontrivial sufficient condition of termi-
nation of partial evaluation?

(b) Which parts of the object program (i.e.,
the result of partial evaluation of an interpreter
with respect-to-a source program) are more
efficient than the corresponding parts of the
gsource program and to what extent? What are
the characteristics of the object program and
how may it be optimized (with respect to time
and memory)?

(c) Quantitatively, to what extent is describ—
ing an interpreter easier than describing a trans-
lator? Can we find a partial evaluation algorithm
generating a compiler which is as efficient as a
compiler generated from a translator?

(d) What kind of semantic metalanguage shall
we use to describe an interpreter in order to
achieve efficient partial evaluation of the inter-
preter?

At present the author cannot answer the above
questions clearly. It is considered that investiga-
tions along the following lines will solve those
questions.

(1) Understanding structures of interpreters
of programming languages.

(2) Development of a semantic metalanguage
which can be efficiently compiled and by which
we can easily describe the abstract syntax of
programming languages, the states of abstract
machines (stack, table, list, etc.) and their
transitions, numerical computation, and list
precessing,

(3) Implementation of a complete partial
evaluation algorithm for a specific semantic
metalanguage.

(4) Theoretical study on the partial evaluation
of computer programs.

(5) Optimization of semantic metalanguages.



The author has made a little progress on
item (3). A partial evaluation algorithm which
is almost equivalent to o has been described
in LISP, and a compiler of program features [6]
has been generated from the interpreter of pro-
gram features by the algorithm. The compiler
translates ALGOL-like programs written in the
program features into an equivalent system of
equations. For example,

prog [(u«; v];
“: =n;
L1 (oull (4] —return {v]];
v =cons [m [x]); 0],
# i =cdr (x];
go[L1]]-

is translated into

gllal=g2 [ppair (U V); a]]

g2 [a]=prog 2'(rplacd [assoc [U; a] ; eval [N
al]l; g3[a-]]

g3 [a]=g4 [a];

g4 [al=g5[al;

g 5 [a)=(eval ((NULL U); a]—eval [V;a];
T—g6 [a]]

g6 [al=g7 (a]

g7 (a]=prog 2 [rplacd [assoc [V; a]; eval
[(CONS(CAR ) V); a]]; g8 [a]]

g 8 (a]=prog 2 [rplacd (assoc [U; a] ; eval
[(CDR Uy; all; g9 [al]

g9 [al=g4 [a]

where gl-g9 are-the function names generated
by the compiler and gl[a] is the object program.
Superfluous equations such as-g3[a] = g4(a],
gdl[a] = g5[a], etc.,can be avoided by optimiza-
tion of the semantic metalanguage (in this case,
LISP). -

5. Conclusion

The compiler generation method described
in this paper is still in the conceptual stage. It

-
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remains to determine whether or not the method
can be put to practical use in the near future.
However, the author hopes that this paper ex-
plains the relationship between formal methods

of programming language description and actual
compilers. It is also hoped that this paper makes
a contribution to the study of a compiler-
compiler.
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