Partial Evaluation and Mixed Computation

D. Bjgmner, A.P. Ershov and N.D. Jones (Editors)

Elsevier Science Publishers B.V. (North-Holland) 133
© IFIP, 1988

GENERALIZED PARTIAL COMPUTATION

Yoshihiko Futamura and Kenroku Nogi

Advanced Research Laboratory
Hitachi, Ltd.
Kokubunji, Tokyo, Japan

In this paper, a new partial computation method that makes use of a
theorem prover when evaluating conditions of conditional expressions
is proposed. This method is called "Generalized Partial Computation
(GPC)” because it is more powerful than conventional methods that
use interpreters when evaluating conditions of conditional expres-
sions (The old method is called "Interpreter Dependent Partial Com-
putation (IDPC)” in this paper).

To show GPC’s power, it is applied to a program transformation of an
0(m#*n) time program to an 0(m+n) program. Also shown is that the
combination of GPC and recursion removal methods is a very powerful
program transformation technique. Finally, two more order changing
program transformation examples are given.

1. INTRODUCTION

The practical importance of partial computation in computer science was first
recognized around 1970. Partial computation has been considered in the follow-
ing way with this kind of program transformation [2]:

Let f be a program (function) with two parameters £ (a known parameter)
and u (an unknown parameter). First, finish all the f computations that
can be performed by using only the %k value while f computations that
cannot be performed without knowing the u# value should be left intact.
Then we have a new program, fco, having the property

frolul=f[k0;ul
where k0 stands for the k value.

This formula is similar to Kleene's s-m-n theorem [7] as first pointed out by
Ershov [5]. However, fxo of the s-m-n theorem is just a function closure

A [[ul;f[kO;u]] and it does not improve program efficiency. On the contrary,
since computations concerning 2 have been finished in fvo produced by par-
tial computation, the f.o[u0] may run quicker than f[kO;u0] when a given u
value is u0.

Let a [f:k0] be the result of partially computing f when k=k0, ie. if a is
a partial evaluator, then a [f;k0]=f.o. Let 7/ be a programming language in-
terpreter and p be a program. The following relationships are then well
known [2, 3, 12]:

a [I;p] is an object program.

a [a;l] is a compiler.

a[a;a] is a compiler-compiler.
By using an interpreter for evaluating conditions of conditional expression,
@ 's have been implemented. This implementation has a limitation that it uses
only the %k value. The basic idea of a and its limitation will be discussed
in Appendix 1.

In this paper, a new partial evaluator using not only the k-value, but also

134 Y. Futamura and K. Nogi

all informa'tion on the operating environment of a program is proposed. Let 4
be a new partial evaluator, ¢ a program and i information on the operating
environment. The result of partially computing e on i is described as B [e;i]
in full, or (e), as an abbreviation.

B uses a theorem prover and information { when it evaluates conditions of a
conditional expression. Note that, for notational convenience, program e is
a form (function with its parameters) for 8 while a program is a function for
a (see Appendix 1).

Let & be a program, and 2 and u be free variables in &b. If

f=A [{k;ul:;b] then a [f;k0]=A [[u];8 [b;{k=k0}]] where {k=k0} is a predicate
(information) denoting that k0 is the k-value. This shows that 8 can be
considered to be more general than a . Therefore, 8 is called a Generalized
Partial Computation (GPC) while @ is called an Interpreter Dependent Partial
Computation (IDPC) (see Appendix 1).

The principle of B is simple and has been used in informal program transfor-
mations. 1t was also implicitly used in Kahn's partial evaluator [6]. This
paper extends the principle to a more powerful and systematic partial computa-
tion method. First, the basic idea of B and its application to program trans-
formation from a nonlinear pattern matcher to a KMP type linear pattern match-
er [8] are shown. This is an example transformation of an 0(m#%n) time program
to an O0(m+n) time program. Finally, least fixpoints of recursive programs are
produced using a combination of partial computation and recursion removal
techniques. These productions are also examples of order changing program
transformations.

2. GENERALIZED PARTIAL COMPUTATION PRINCIPLE

Generalized Partial Computation (GPC) has been established by formalizing hu-
man informal program transformation processes (getting a fixpoint of a recur-
sive function [9] is an example of the transformation). GPC uses a logic sys-
tem to evaluate a predicate which is not evaluable for an interpreter . The
logic system is consistent with the interpreter and is called underlying log-
ic. Before explaining the basic idea of GPC, definitions will be provided for
u-form, u-information and underlying logic. Reader’s knowledge about PAD [4]
(a graphical representation for structured programs) and LISP M-expression[10]
are assumed in the following discourse.

u-form: L, a constant, variable u, or a form including only u as free
variables. The symbol | is called bottom and is used to stand for an undefined
value.

Example 1: A conditional u-form written in PAD:

(This means
if u=o then | else u#*fact{u-1])

uxfact{u-1]

When a form includes more than one kind of variable, for example x and vy,
then the variables are treated as a variable-vector such as u=<{x,y>.

value of u-form: Let e be a u-form and eval be a fixpoint interpreter of

-u-forms. Then eval(e;({uc))] stands for a value of e when the constant ¢

is a value of u. If the value of evalle;((u.c))] is undefined then
evalle;({uc))l=1. ’

Definition 1: Let a and b be constants or L. Then atb if and only if a=b
or a=1.

Generalized Partial Computation 135

u- information: A conjunction of predicates on u (Note that this is a u-
form too).

Example 2: Examples of u-information:
—null[u)A(A=car[u])Anull[cdr[u]]
true (This is represented by ¢.)

Definition 2: Compatibility with ewval:

Let i and » be any u-information such that ik *p, where il ”p means that
p is provable from i based on some logic system. The logic system is com-
patible with ewval if and only if eval[p;((uc))]ctrue for any constant ¢
such that evall[i;((u.c))]ctrue.

When evall[p;((u.c))] is always true or false for any u-form (predicate) »
and any constant ¢, then € is eguivalent to =. The compatibility property
guarantees the soundness of a logic system with respect to the interpreter
eval.

Example 3: Let LO be a logic system in which i=p if ik*p. Then LO is a
trivial logic system that is compatible with ewval.

underlying logic: The logic system is called underlying logic if and only if
it is compatible with eval.

Depending on the predicate evaluation power of eval, an underlying logic can
be any logic system, for example propositional logic, predicate logic, or in-
formal logic.

generalized partial computation method B and B-L partial evaluator:

Let L be an underlying logic, e be a u-form and ¢ be a u-information.
Then any transformation § of e to a u-form using L and { is called a
generalized partial computation method. The result of the transformation is
written as f[L;e;i]. The pair B-L is called the f-L partial evaluator or the §
-partial evaluator if L is not very important. When there is no confusion, §
can stand for both the partial computation method and the § partial evaluator.
For example, § in g[e;i] in the following discourse means a f-L partial evalu-
ator, and ffe;i]=8[L;e;i] for some L. When B is also clear in the context,
(e): is used to represent fle;il.

In the following discourse, 8 and L stand for a nonspecific partial compu-
tation method and its underlying logic, respectively. 80,81,82 and 83
stand for specific partial computation methods.

Example 4: Let B0 be a transformation such that g0[e;il=e. Then 0 is a very
trivial partial computation method.

Example 5: Partial computation method A8 1:
(1) If e is a conditional expression, i.e.

(where x and y are u-expressions)

then
(1.1) If i F*p, then (e):i=(x):
(1.2) If i F*—p, then (e):=(y);
(1.3) If it is not easy to decide if i F*p or i F*—p, then

136 Y. Futamura and K. Nogi

(X)i/\p

(e)i=

(2) If e is not a conditional expression, then
(e)i=e (i.e. there is no transformation)

Theorem proving and generation of a new pr‘edi_cate have also been conducted in
symbolic execution and program verification [11] as in f1. However, they have
never had the function of generating a conditional form described in the (1.3)
above.

Example 6: Let 81 be the §1-L0 partial evaluator for LO of Example 3. Then
plle;¢]=e.

Example 7: Partial computation of Ackermann’s function when $1 uses informal
logic on natural numbers:

alm;n]=
ntl]

(a[m;n]) im=01= n+l and
—{ a[m-1;1]

(a[m:n])lnool:

alm-1;a[m;n-1]]
S |

Definition 3: Let d and e be u-forms, and { be u-information. Then
d€'e if and only if evalld;{(u.c))]lcevalle;{((uc))] for any constant ¢ such
that evalli; ((u.c))]ctrue.

This means that e is more defined than d for a constant ¢ when ¢ does
not make i false. Therefore, dC%e means that the domain of e is larger
than that of d.

Definition 4: Correctness of § partial evaluator:
§ partial evaluator is correct if and only if eCiple:;i] for any u-form e and
any u-information i.

The correctness of f0 partial evaluator and B1-LO partial evaluator is trivi-
al. Let f be an undefined function, and e be a u-form described below:

Then Definition 4 suggests that gle;i] may be 0 while evalle;({u.c))] for any
¢ is undefined. Therefore, program transformation by partial evaluators does
not always preserve least fixpoints of programs.

Generalized Partial Computation 137

Definition 5: Correctness of partial computation method §:
Partial computation method § is correct if and only if 8-L partial evaluator
is correct for any underlying logic L.

It is trivial that partial computation method B0 is correct. Two correctness
theorems will be given in Appendix 2. Proofs can be conducted by induction on
the depth of conditional forms contained in a u-form.

Theorem 1: Partial computation method g1 is correct.

Definition 6: Let d and e be u-forms and i be a u-information. d='e if and
only if dtie and ec'd.

=' gtands for a kind of a strong equivalence. =* stands for a strong equiva-

lence itself. Symbol = will be used as an abbreviation for =¢.

Definition 7: Strict correctness of j partial evaluator:
g partial evaluator is strictly correct if and only if e='f[e;i] for any u-
form e and any u-information i.

1f p partial evaluator is strictly correct, then e=j[e;¢]. e=f[e;$] means that
evalle;((u.c))]=eval[8[e;#]; ((u.c))] for any constant c . Therefore, the
transformation f{e;$] by a strictly correct B partial evaluator preserves the
least fixpoint of e.

Theorem 2: 1f every predicate, say p, In underlying logic is total, i.e.
eval[p;{(cu))] is defined for any constant c, then §1 partial evaluator is
strictly correct.

Note that u-information is a dynamic part of information on the operating en-
vironment of a program. 1t varies during partial computation depending on pro-
gram structure. On the contrary, information on functions (for example
car[con s[x;yl]=x) does not vary during partial computation, i.e. it is sta-
tic. Let g0 be static information, ¢ be dynamic u-information, g be a
higher order variable with its domain of predicates, and B [e;i;g] be

B le;ir g]. Then B sole;il=(8 [e;irg]) s=s01. Therefore, B .o is a partial
evaluator including g0 static information in it. Thus, generality will not
be lost if it is thought that static information is included in a partial
evaluator.

3. MORE PRACTICAL GPC

As described in the previous section, 8 0 partial evaluator is correct for any
underlying logic. Therefore, there are an infinite number of correct partial
evaluators. However, B 0 partial evaluator has no practical significance be-
cause it does not improve program efficiency. 81 is still far from being

practical because it does not perform any transformation for non conditional
u-forms. In this section, partial computation method B8 2 that performs signi-
ficant transformation on u-forms is described. 8 2 changes u-form e depending
on ¢ types such as constant, variable, or composite expression. b/g stands
for a u-form obtained from &, substituting g for all the free occurrences
of u in &. For example, if b=car[u] and g=cdr{u] then b/g=car{cdr(ull.

B 2 handles conditional u-forms the same as B8 1. The hardest point in imple-
menting B2 is when e is a composite u-form. Let e= f[g] where f is a
function not including u as a free variable and g is a u-form. Furthermore,
let f= A [[u];b] for a u-form &. To carry out partial computation of e
with u-information i in this case, just replacing (f(gl); by (b/g): is not
enough. This is because when & includes recursive calls to f, the substi-
tution often causes repetition of similar computation. A technique called
"partial definition” is introduced below to eliminate therepetition as often
as possible.

138 Y. Futamura and K. Nogi

Before starting partial computation of u-form flig] with u-information i, let
fy' be a new function name as a result of the partial computation. f g and
i is called a nonprimitive function, a symbolic argument and partial infor-
mation, respectively. f,' is called a partially defined function for (f{gl):.
After completing partial computation, f.' is finally defined. However, the
fact that f, will be the result of partial computation may be used during the
partial computation. This is a sort of indirect addressing.

A program transformation technique using f.' during partial computation has
already been developed [2]. This is a special case-of a general program trans-
formation technique called folding [1]. Introducing a partialiy defined func-
tion is nearly equal to adding the rule f;'[u]<=82[f[g];i] to a system of
recursion equations and then continuing program transformation with unfolding
B 2(flgl;i]. The use of a partially defined function is similar to folding
B2[f[gl;i] to fa'[ul.

Let H be a global set of functions which is empty before starting partial
computation. Using H, partially defined functions will be defined below:
Definition 8: Partial definition:
Let { be u-information and e=f[g] be u-form. Then (e); is partially defined
if and only if there is u-information j such that

iF*i/k and fq'[u]€H
where d and k are u-forms such that g=d/k.

Definition 9: Partially defined function:
Function f47 in Definition 8 is called a partially defined function for (e);.

Example 7: Partially defined functions for (e): where e=f[g]:

(1) Let j=¢, ¢ be any u-information, and d and k be any u-forms such
that g=d/k. If fa’€H, then fa' is a partially defined function for (e);
because iF*4 and é/k=¢.

(2) Let g=cdr[ul], k=cdr{u], d=u and j2=¢. If f.®*€ H, then f.* is a partially
defined function of {(e): because of (1).

(3) Let g=cdr{ul, k=cdr{u], d=u, j3=-null{cd?r[u]]A(cadr[u]=A)A(car[u]=A),
i== nullcd?®r[u] JA-(cad®r{ul=B)A(cad?r[u]=A)A(cadr{u]l=A)A(car[u]=A). If
fqi 2€H, then fq'? is a partially defined function for (e); because
ikF*i3/cdrlu].

Two partially defined functions fa72 and f4'? in the examples above are for
(f{g]l): and j3F*j2. In this case i3 is calied to be closer to i than

72, and j2 is called to be further from ¢ than j3. It is clear that ¢
is the furthest from any 1i.

Assume that f.’ is a partially defined function for (f[g]), and that the un-
derlying logic is substitutive (i.e. if iF’j then i/kF*j/k), then (f[g]):
can be replaced by (fa’[k]);. The very rough explanation for the correctness
of this replacement is:

(fa? [k1):= " ((£0d])s/k) =" ((£{d]/K) s x) = ((£L81) 5)i =" (£lg])s.

This use of partially defined function f,' causes introduction of recursive
calls to fg'. Therefore, the result of partial computation is a set of recur-
sive functions (for example, pattern matcher hl and its auxiliary functions
h2, h3 and h4 in the next section). This recursion introduction has the fol-
lowing two effects:

(1) It may dramatically increase the effectiveness of partial computation by
- partially computing the partial result of f,;' (see the example in a later sec-
tion).

(2) It may terminate an infinite partial computation caused by repetition of
a similar computation.

Generalized Partial Computation 139

Note that (1) and (2) above are exclusive. When effect (1) is not expected,
i.e. when a program will not be improved, the result of partial computation
will be too large or partial computation will not terminate. Thus, (2) is ex-
pected. Selecting either (1) or (2) is not decidable. However, a practical
heuristic automated method for the selection is an interesting future problem.
Partial definition and its proper use may be essential to implementing prac-
tical partial evaluators.

To implement partially defined functions, 82 uses partial definition opera-
tor <=. Let f be a function name. Then f[u]l<=8 2[e;i] (or f{ul<= (e);) means
that when f is referred after the execution of <= operator, the body of f
is the result of transformation of e by B2[e;i] at the time of f refer-
ence. Therefore f is a dynamically changing nonprimitive function.

Example 8: Partial computation method B8 2:
(1) If e is a conditional form then do the same as B1.
(2) If e is a constant then (e)i=e.
(3) If e is a variable then (e).=e.
(4) If e is a composite form such as e=f[g] for a function f,
(4.1) If f is a primitive function such as LISP SUBR, then (e):=f[(g):].
(4.2) If f i1s a nonprimitive function such as LISP EXPR, then
let f=A[{[u];b] and:

(4.2.1) If (e): is partially defined, then let fyq'=1[[u]l;m] be one of the
partially defined functions (if a function with the closest partial
information j to i is selected, the partial evaluator can be ex-
ecuted most quickly). Let g=d/k and i F*Jj/k, then (e);=(fs? [k]);.

(4.22) If (e): is not partially defined, then select one of the following
operations (4.2.2.1) or (4.2.2.2) depending on its effectiveness
(note that this selection is up to the user of the partial evalua-
tor).

(42.2.1) If it is effective in performing further partial computation,
then (e)i=fg ' [u]; H=HU {f " }:f " [ul<=(b/g);.
(4.2.2.2) Otherwise, (e)i=e.

Example 9: Partial computation of append:

(a is assumed to be a constant)

fix]= |null[x]

cons [car[x];f[cdr[x]]]i

(f[x])e=fx®[x] ; H={f.*} (from 4.2.2.1)

cons[car[x]; f[cdr[x]]]!

<= null[x]

(a)n\nll [x1

(from 1)

.
(cons[car[x]1;flcdr[x]1]1])=nurr [ﬂ

140 Y. Futamura and K. Nogi

(from 2)

= null [x]

cons[car [x]; (flcdr[x]])-nur1x1]{ (from 4.1)

= null[x]

—
consfcar[x); (fx?lcdrix]])anum [x]]! (from 4.2.1)

= null[x]

cons[car[x];f<*[cdr(x]]] (from 4.2.2.2)

B 2 terminates when e is a constant or a variable, or when the user of 82
decides to terminate. Finding practical methods for automatic termination is
an interesting research problem. The correctness of 82 will not be discussed
in this paper. In the following discussion, f,! may be represented by such a
simpler symbol as hn. Furthermore, partial definitions may be omitted when
partially defined functions will not be used later.

4. PARTIAL COMPUTATION OF A SIMPLE PATTERN MATCHER

As an example showing the behavior of 82, a simple nonlinear pattern matcher
m[p;t] is partially evaluated with pattern p=(A A A B) using B2 described in
the previous section. The definition of m(p;t] is given in Appendix 1. The
partial computation result is a KMP [8] type linear pattern matcher. This is
an example of order changing program transformation.

For computation convenience, m¢a a a ») [t] is first derived by using a ins-
tead of directly applying B2 to m (see Appendix 1). Partial definitions
which are not used later will not be stated explicitly in the following dis-
course (for example in (1), (3), (5) and (7) below). Note also that m, is an
abbreviation for m(a a a 8y and informal logic on LISP is used as underlying
logic.

hl[t]=(m.[t]).<=

(from 4.2.2.1)

where h] stands for m; * and forms written in small letters stand for the

final result of partial computation with the original forms just beneath them.

Numbers such as (1) and (2) written right side of PAD rectangles mean that the
partial computation of t-forms contained in the rectangles will be referred
later by the numbers.

Generalized Partial Computation 141
(1) il=-nuil{t]A(Atcar[t])
(m,[cdr[t]])i1=hl{cdr[t]] (from 4.2.1 and 4.2.2.2)
(2) i2=-null[t]}A(A=car[t])
(fzledrt];t]).2=h2[t]<=

“ false hllcddritl]
null[cdr[t]]<

Atcadr[t]

(3)

(4)
12

(from 4.2.2.1; h2 stands for fz <carfe1. > 2)

(3) i3=i2A-null[cdr[t]1A(Atcadrt])
(my[edr[t]])is=
(h][Cdr[t]])i3=

{ false
/ ! null[cdr[t]]<

hl[cddr[t]]

‘] Atcadr(t]

h2[cdr(t]]

i3
(from 4.2.1 and 4.2.2.1)

=(hllcddrt]]):s

=h1{cddr(t]] (from 4.2.1 and 4.2.2.2)

(4) 14=i12A-nullfcdr[t1]A(A=cadr([t])
(fsleddr[t];t])ia=h3[t]<=

false h1llcdddr[t]]

my[edr(t]]

null[cddr[t]] (5)

A#caddr(t] halt]

f4[cdddr[t];t];] (6)

(from 4.2.2.1)
(5) i5=i4A-null [cddr[t]]A(A¢caddr[t])

[
(my [edr[t]])s=
false

i4

nullf{cdr(t]] hl{cddrit]]
A#cadr(t]
h2lcdr(tl]
i5
\ (from 4.2.1 and 4.2.2.1)

=(h2[cdr[t]]),s=

142

Y. Futamura and K. Nogi

null{cddrit]]

{A}alse

hl[cdddr{t]]

hllcdddr(t]]):
[t1]

=(
=hl[cdddr[

(6)

A#caddr[t]

h3[cdr(t]]

5

(from 4.2.2.2)

i6=i4A-null[cddrit]]A(A=caddr([t])

(faledddr(t];t])ie=ha[t] <=

null[cdddr{t]] <

h3lcdr[tl]

false

mi[edr[t]]

(7)
(my[cdr[t]])iz=
(h2[cdr[t]]) 7=

tru

i5
(from 4.2.2.1)

(7

1

i7=16A-null[cdddr [t] 1A (B#cadddr[t])

(the same as (5))

null[cddr[t]]<i

false

=(h3[cdrit]]):-=
=h3[cdr[t]]

A#caddr{t] <
. h3[cdr([t]]

(from 4.2.2.2)

Thus hl[t] has been completely defined as (mi[t]),.

hl[t]=

null[cdr(t]]

hi[cddr[t]]

|
{ hll[cdddr[t]]

B#cadddr(t] < .
r;5[cddddr[t];t]41
e]

i6

(from 4.2.2.1)

(from 4.2.2.1)

Generalized Partial Computation 143

h3[t]=

null(cddr[t]] hl[cdddr[t]]

Atcaddr([t]

false

null[cdddr([t]] h3[cdr(t]]

B#cadddr[t]

Example computation :
hi1{(AABCAAAB)I=h2[(AABCAAA =
h1[(C A A AB)]=hI{(A A AB)]=h2[(A A A A A B)]=true

1t is clear from the above example that h1[t] runs in almost the same manner

as the KMP pattern matcher. Therefore, if cd®r can be executed in constant
time, h1{t] can run in linear time. Note that the transformation from

(my[cdr(t]])iz to (h2[cdr(t]])i7 in (7) is almost the same as that of
(mi{cdr[t]11)is to (h2[cdr{tl])is in (5). This means that B2 fails to avoid

repeating the same computation. However, it is not very difficult to correct

B 2 not repeating this kind of computation.
5. PARTIAL COMPUTATION AND LEAST FIXPOINT

Generalized partial computation is similar to a program transformation tech-
nique [9] often used to derive a least fixpoint of a recursive function. Let
B be a strictly correct B8 partial evaluator, = [f] be a functional,

f{ul==7 [f][u] be a recursive program, and 1fz be a least fixpoint of = [f].
Then Ifr=lub{z®[Q]}. Let eval be a fixpoint interpreter. Then

Bz [fllul;¢ 1= 7 [f][u] (from strict correctness of 8)

z [f][u] = IfT {u] (from the definitions of ewal and 1fz)
Therefore 1fz [u]l= 8 [z [fllul;¢]. If the right side does not include a re-
cursive call, A [[ul;8 (7 [f]l{ul;$¢ 1] is a fixpoint of = [f]. Since B often
introduces recursive calls by use of partial definition, it is necessary to
remove recursion from partial computation results to obtain least fixpoints.

To derive a fixpoint of a recursive program, a program transformation rule
called "distribution of a function over a conditional expression” or “merging
of functions” is important. Partial computation method B 3 described below
incorporates this rule (4.4) and two others (3 and 4.5) with g82.

Example 10: Partial computation method B3
Execute one of the four operations below depending on its effectiveness:

(1) If e is a conditional form then do the same as B 2.

(2) (e)i=e.

(3) (e);=(v): for u-form » such that ilF*{v=e}.

(4) If e is a composite form such as e=f(g] for a function f, then execute
one of the following five operations depending on its effectiveness:

(4.1) Partially define (e):, ie. (e);=f,'[u]; H=HU{f.'}:f,"[ul<=e’ where e’
is one of the right side of the transformation rules of 83 exept
(4.1).

144 Y. Futamura and K, Nogi

(4.2) If (e); is partially defined, then let f¢’=A[[u];m] be one of the par-
tially defined functions (if a function with the closest partial infor-
mation j to ¢ is selected, the partial evaluator can be executed
most quickly). Let g=d/k and i F*j/k, then (e)i=(fs’ [k]):.

(4.3) If f is a nonprimitive function such as f=A[[u];b] then (e);=(b/g);.

(44) If g is a conditional form:
fly]

If g= then (e):i=(|p Yi-

(45) (e);=(f[result of (g)il):.

By combining 8 3 with some recursion removal rules, least fixpoints of McCar-
thy’s 91-function and Takeuchi’s Tarai-function can be derived as follows:

Example 11: McCarthy’s 91-function:

flf[x+11]]

x-10

The derivation process is described in Appendix 3 which shows that 83 is a
highly nondeterministic procedure. To make B 3 more deterministic is a future
research problem.

(f[x])e=h1[x]<= x>100

Example 12: Takeuchi’'s Tarai-function:
clx;y;z]==

1
clelx-1;y;z]5cely-1z5x) s elz-1:xi vl

(clx;y;2])e=hllx;y;2]<=

w (Derivation process is omitted because of its lengthiness.)

Generalized Partial Computation 145

6. CONCLUSION

The Generalized Partial Computation method and its applications to order
changing program transformations have been presented in this paper. Proving
the correctness of various partial computation procedures and their efficient
implementation are future research problems. The idea of GPC came to one of
the authors while visiting UPMAIL (Uppsala Programming Methodology and Artifi-
cial Intelligence Laboratory) from October, 1985 to September, 1986. The au-
thor is grateful to the members of UPMAIL for their fruitful discussion which
encouraged him very much. The authors are also grateful to Academician A. P.
Ershov for his long time encouraging them to continue partial computation re-
search.

7. REFERENCES

1) Burstall, RM. and Darlington, J.: A transformation system for developing
recursive program, JACM, Vol.24, No.l, 1977, pp.44-67.
2) Futamura, Y.: Partial evaluation of computation process--an approach to a
compiler-compiler, Computer, systems, controls 2, Nob5, 1971, pp.45-50.
3) Futamura, Y.: Partial computation of programs, In E. Goto[et al] (eds.) RIMS
Symposia on Software Science and Engineering, Kyoto, Japan, 1982. Lecture
Notes in Computer Science 147(1983) 1-35, Springer-Verlag.

4) Futamura, Y. Kawai, T., Tsutsumi, M. and Horikoshi, H.: Development of
computer programs by Problem Analysis Diagram (PAD), Proc. of 5ICSE, IEEE
Computer Society, New York, 1981.

5) Ershov, A.P: Mixed computation in the class of recursive program schema,
Acta Cybernetica, Tom.4, Fosc.l, Szeged, 1978.
6) Kahn, K. M.: A partial evaluation of Lisp written in Prolog, UPMAIL Report

Department of Computing Science, Uppsala University, Uppsala, Sweden, March
11, 1982.

7) Kleene, S. C.. Introduction to Meta-Mathematics. North-Holland Publishing
Co., Amsterdam, 1952.

8) Knuth, D. E., Morris, J. H. and Pratt, V. R: Fast pattern matching in
strings, SIAM Journal of Computer, Vol.6, No.2, June 1977, pp.323-350.

9) Manna, Z.: Mathematical Theory of Computation, McGRAW-HILL, 1974.

10) McCarthy, J. et al: LISP 1.5 Programmer’s Manual M.T. Press Cambridge,
Massachusetts, 1962.

11) Nelson, G. and Oppen, D. C.:. Simplification by cooperating decision
procedures, ACM TOPLAS, Vol.l, No.2, October 1979, pp245-257.

12) Turchin, V. F.: The concept of a supercompiler, ACM TOPLAS, Vol.8, No.3,
July 1986, pp.292-325.

APPENDIX 1: DIFFERENCES BETWEEN a AND 2

In this section, the basic idea of the conventional partial computation method
a and its weakness are discussed. Partial computation of a simple pattern
matcher concerning a given pattern is presented as an example. Let f=

A [[k:ul:b]. The basic idea of a@ can be described by the following two steps
(1) and (2) where eval is a fixpoint interpreter of recursive programs. a
is named as an Interpreter Dependent Partial Computation because it uses an
interpreter, eval, when it evaluates conditions of a conditional expression.

Interpreter Dependent Partial Computation a :
(1) If b is a conditional expression, i.e.

146 Y. Futamura and K. Nogi

then

(1.1) if eval[p; ((k.k0))] is true, then fuo=a [A [[k;u];x];k0].
(1.2) if evallp; ((k.k0))] is false, then fio=a [A [[k;u);y];k0].
(1.3) if evalip; ((k.k0))] is undefined, then

—

alA [[k:u]:XJ:kOJJ

alA [[k;U];y];kO]T

where {p[k]}*® is a form obtained by substituting k0 for all free occur-
rences of k in p.

(2) If b is not conditional, then fyo=A [[u];{b[k]}*°].
Syntactic differences between a and B are summarized in Table 1.

Table 1: Syntactic differences between @ and 8

first argument second argument result
a | function f known value k0 of variable k | fxo
B | u-form e predicate i on variable u (e):

Differences between @ and B in the power of partial computation are describ-
ed below:

(1) B is more powerful than @ in selecting one of two branches of a condi-
tional expression. Assume that m>0 is known and and a[m;n] is Ackermann’s
function. 1f the value of m is unknown, evalim>0;al is undefined (where a
is any environment not including m-value). Therefore, @ cannot choose one
of the conditional branches. On the contrary, since m>0}*m>0, 8 can choose
the m>0 branch.

(2) Even when 8 cannot choose one of the conditional branches, it utilizes
the condition, say p, of the branches, say x and y, in the later phase
of partial computation. That is, (x)ias or (¥)is-e. will be performed. On the
contrary, @ does not use p in the partial computation of x and y.
Therefore, B8 is considered more powerful than «a .

To show the weakness of an Interpreter Dependent Partial Computation (IDPC), a
simple pattern matcher is partially evaluated concerning a given pattern be-
low. Note that the IDPC method being used here is an extension of a 3'. The
extension is almost the same as the one used to obtain 82 from 8 .

Let p and ¢ be a pattern and a text respectively. If p is contained in
¢, the value of a pattern matcher m{p;t] is true. If otherwise, the value is
false. m is defined by using the auxiliary function f below. Symbol == is
used to represent recursive definition of functions.

mip;t]==f[p;t;t]

flisust]==

Generalized Partial Computation 147

true

null[i]

mlp;edrt]]

car[i]#car(u]

rf[cdr[i];cdr[u]:t] '

(where p is global).

The pattern matcher m will be partially evaluated concerning p= (A A A B).
The result is represented as m,. For notational convenience, lists are repre-

sented as follows:

1 for (A A AB)
2 for (A A B)
3 for (A B)

4 for (B)

5 for ()

my [edr[t]]

A#car[t]

foledr[t]:t]

(from null[i)=nuli{(A A A B)]=false and carlil=car[(A A A B)]=A)

falust]

148 Y. Futamura and K. Nogi

fs(u;t]==true
The m,[t] is almost four times as large as m[p;t]. However, m:[t] is still an
O(m#*n) time program where m and n are the lengths of p and t, respectively.
On the contrary, h1[t], obtained by using 82 in Section 4, is an 0(m+n} pro-
gram.
APPENDIX 2: CORRECTNESS PROOF OF B1

Two lemmas are given before the proof of Theorem 1.

Lemma 1: Let i be any u-information and e be a conditional u-form such
that

then (1) if i F*p then e €'x.
(2)if i b*—p then eCiy .

Proof of Lemma f: (1) If ibt*p then evallp;((u.c))]< true for any ¢ such
that evalli;((u.c))] € true from the definition of the underlying logic. There-
fore, evalle;({(uc))] is L or eval[x;({uc))]. Therefore, e<'x. (2) The
same as (1).

Lemma 2: Let e be a conditional u-form the same as above and e/ be a
conditional u-form described below. Then e 2 el when x2***x1 and
y 2 iA-p v 1.

Proof of Lemma 2: Assume that eval[i;((cu))]& true. If eval[p;({(uc))]=1
then evalle;{((u.c))]=eval{el:((uc))l=L . If evallp;{(uc))]=true then
evalle: ((we))]=evallx;((u.c))]2eval[xl;{({uc))]=evallel;{((u.c))]. When
eval[p;({u.c))]=false, it can be proved that evalle;{({(u.c))]2evallel;{((u.c))]
almost the same as above. Therefore, e2'el.

Proof of Theorem I: Let e be a u-form and { be u-information. By using
induction on the nesting depth of conditional forms in e, B1lleii]2'e
will be proved.
(1) When e is not a conditional form, B 1[eji]l=e 2'e.
(2) When e is a conditional form,
- (2.1) Assume that i F*p:
B 1le:il=B81[x;il2 'x (from the induction hypothesis)
Dte (fromlLemmal).
(2.2) Assume that i F*— p: The same as above.
(2.3) Assume that neither i F*p nor 1 F*—p:

Generalized Partial Computation 149

B 1[x;ihp]

Blle;i]l=

B 1ly;iA-p]

and B1[x;irp]2%4"x and B 1[y;iA-p]2i*"*y from the induction
hypothesis. Therefore, from Lemma 2,

Blle;ij=2!

(QED)

Proof of Theorem 2: Replace 2' by ="' in the proof above.

APPENDIX 3: PARTIAL COMPUTATION OF MCCARTHY'S 91-FUNCTION

To obtain the minimal fixpoint of McCarthy’s 91-function, the following two

recursion removal rules are used where a, b and ¢ stand for forms not
containing x as a free variable:

(1)

hix]=

and h{x]=a for any x.

glh{x+c]]

If ¢>0 and glaj=a then h[x]=a for any x where g is a function not
containing x as a free variable.

The correctness of the rules above is trivial.

(f(x])e=hl[x] (from 4.1) Note that hl stands for f.*: The h2 and h3
below are used in a similar way.

(from 4.3.3 and 1.3)

(= h2(x]
(F[f[x*+11]]) t1002x
(flfx+11] =h2 [x] (from 4.1)

])lloolxl
<= (F[(f[x+11)) troozx1 1) 11002xy (from 4.5)
h1{x+11]) t1002x1]) t1002x1 {(from 4.2)

150 Y. Futamura and K. Nogi

(from 4.3)

= x+11>100)t100zx1 1) t100zx:

=(hl[1) it100zx) (from 3, 2 and 4.2)

)uoogx) (from 4‘4)

h1[h2(x+111}

n3[x]

(h1[x+1]) (100zx>891

= 1x>89 (from 1.3)

(h1[h2 [X+11]])|E9le|

= 1x>89 (from 2)
— h1{h2{x+11]]
(h1[x*1]) t1002x>891=h3[x] (from 4.1)
<:()lloo;x>89| (from 4.3)
(h2[x+1])
1
(x-1) t100zx>891 A tx+1>1001
= |x+1>100 (from 1.3)
1
(hz[x+1])l100§x>8911\l100§x+ll!
= |x>99 (from 3 and 2)

(h2[x+1]) (100>x>89:

Generalized Partial Computation

(from 4.3.3)

h3[x+1]

h1[h2[x+11]]

x+1>89

)(100>x>89)

Yol
—_

(from 1.1)

x>99
(h3[x+1]) l100>x>E9)J

91
= |x>99
h3[x+1] (from 2)

From the rule (1), h3[x]=91. Therefore,

h2[x]=

h1[h2{x+11]]

Since h1{911=91, h2[x]=91 from the rule (2). Therefore,

x-10

h1{x]= |x>100

