';ﬁ 5% 2 i Wy i ’ ’ = . 5 - ) S RN g A IS S o R SR SN A, R A S ALY, AFLE R, T hpean. e g el . ¥ s vy
» - .

~_ i P Cw/C _Eitiunlioa _/m/ L:fm/o Lo szcw;u.c. smnd g

Ty

—

; ; A _~'/'. (‘ I\
ST oo W tf%,’.);\}/?:‘f&/fe &y _Ne:'(,czm.,;\" Dt d if‘/td 'L cé"’ e, L,__,ux w}
/

4 o S

I e _L: | B ]
7 B
/“’méi//ra _%Fuzxi wofeA -
~ S . \Jy ‘l(/‘[/"lrdi . &.. :a: gl (2._‘____ :fﬁ \»&’3‘?‘_»/\ Y _}_0‘,“7/4&;—_&%7 L / b)/
R B
e ReRUS e Tokye;  JAPAY _ _ .

S - g l'?

- | Higiiies i'wc Mjom«

, Dottty 44/ Ce :;,; oW f)u,)‘/«.)’!»ﬁj creed 1.¢’c"lm4LL
e “mb__,_q/{/ﬂ; Z{_a«“&;_k__“,z"p&b& /!.L 2.2 1’1/ /‘/JJ £ (J/ -
.‘fi ............. s I:L‘—‘-,Jvd' N TV Al —t[ //»f L_(tf e J&m&‘uadm; A5

b ticido | Monploid zecrs

. \_'.




KEY wORDS AKRDPHRAS.5: LISP, partial evaluation,
heuristic proceduares, compiler, semantic compiler,
semantics, lambda calculus, specialization, pattern
languages, predicate calculus, debugging, optimization,
dtea-eompiting, programuing style,.pure LISP, alg;rithm,
programrlzing language, interpreter} ,Cmv»/ﬁtlizq_—,f,m-w':».é,;:fv_

/

CR CATEGORI&S: 5,24 4.12 3.66 4.12 5.23



Abstract

This paper presents a ncw type of generalized com-
piler and compiler-coupiler based on the technique of
partial evalaation. Several alggrithmns for partial
evaluation are presented. Their pfoperties.and limi-
tations are discussed. It is shown how a partial
evaluation program can serve as a generalized com-
piler. Tinis is done by partially evaluating an inter-
preter which provides a semantic and syntatic definition
of the language which is to be compiled. It is also shown
how a partial evaluation program can partially evaluate
itself along with an interpreter to generate a compiler
for any arbitrary language.C}ﬁ,A<W”P“Ff’“*WMFR3

One partial evaluation program called the specializer
was written to process LISP. Thespecializer is shown to
have desiranle theoretical properties such as a freedom
from infinite loops and output code that isvalways correct.
Exaupbes of the use of the’§becializer to compile several
simple languages are given. The resulting output code
is shown. The future problems and possibilities of the

partial evaluation technique are discussed.



I, INTRODUCTION

Thi%%aper presents an unusual idea, a generalized
(multilanguage) compiler based on the principle of partial
evaluation of computer programs. Several such generalized
compilers called specializers have been written, Ex-
amples of their practlcal use are given. The theor-

JmeBlinman ¢l Sronlel sncdealion
retical pr&pert:vs*of”ﬁﬁé”gpectairzer are also discussed,

Consider a siwmple exampl%of partial evaluation.
Suppose we have a FORTRAN statement:

A =B + 2 (C*D)
and suppose that the values C = 2, D =3 are known but
no value has yet'been assigned to the variable B. Then
the FORTRAN statement can be simplified or specialized
or partially evaluated to A = B + 12,

It is easy to see how the concept embodied in this
simple FORTRAN example can be extended; For examplé par-
tial emluation of a conditional jump statement might.
eliminate sonme alternatives., Of course, languages other
than FORTRAN can be simplified or partially evaluated in
an analogous way.

Think of a computer program P as a mechanigm which
takes a number oi input items, Al, A2, A3, . . ., Am, each
one being an element of data, then performs some proéessing

on these data and finally produces an output vector, V,

If some orﬁhe input itmes are known (say Al and A2) at an

{



early time, then it is possible to partially evaluate P

to produce a new simplified oﬁspecialized program P/.

Then at a later time when the missing input itmes, (A3,
«..Am), become available, the new program can be evaluated
(the final evaluation) to producethe same output vector V.
We would naturally expect the final evaluation of P’ to
take less computer time than evaluation of P since part

of the work has already been done;

At this point, it should be plausible to the reader
that rigorous rules for partial evaluation of any com-
puter language could be cmbodied in a program which
would then be able to partially evaluate or specialize
any statement in that language. We will call sﬁch a
program a specializer,

We will now define somq&nformal notation which will
make it easier to discuss the properties of the g?ecializer.
Assume that a specializer is written for some base lan-
guage, L. Normally, a statement, E, written in the the
language L would be evaluated by an interpreter called
EVAL.

V = (EVAL E AL)

Where AL is an association list of variable-value
'pairs‘whioh assigns values to all the variables which
appear in E. V is the value or output of E after normal

evaluation.



Now suppose a psecializer, called SP, is written
for the language L., To specialize the statement E, we
first partition AL into two parts so that ALl assigns
values to variaoles which are known at specializ:tion
time, and AL2 assigns values to the remaining variables,
Thus AL = ALl + ALZ2 .

Now the statement E can bespecialized and final-
evaluated as follows:

E' = (SP E ALl)

V = (EVAL E' AL2)

Where E' is the specialized version oéE and V is the
final value which will be identical té the value obtained
earlier in normal evaluation of E.

cam thee Lo red

But ‘howdo=wes—urse¢ a specializer to compile some
arbitra{y lapguage, Li, PFirst ys-write an interpreter,‘
INL;fvgggégwiﬁﬁcapable of evaluating any statement in L1.
INL1 will thus implicitly define fhe syntax and semantics
of Li1. Any statement, lii, written in L1 may then be
evaluated as follows:

vi = (INL1 E1 AL)

If INL1 is written in L, the language which the
ﬁiecializer is designed to accept, then we can use SP
as a compiler as follows:

E1' = (SP "(INT £1 NIL)"NIL)

Vi = (EVAL £1' AL)

]

Where NIL indicates an empty list, and Ei' is the com-

piled version of Ei. E1' will be expressed in the base



4
language L, and final evaluation of E1!' will produce the
same value Vi as before. 1In thiécase we have used SP as
a universal compiler.

But there is also another, more elegant,way of com-
piling with a specializer. We can use the specializer to
'Specialize itself and thus produce a special purpose comn-
piler for the language L1 as follows:

cPL1 = (sP"(SP(INT NIL NIL) NIL)"NIL)

CPL1 c¢an now be used to compile any particular
statement, Ei, in the language Li:

E1' = (CPL1 E1 NIL)

Vi = (EVAL E1' AL)

In this case SP is used as a compiler-compiler.

We might Call SP a semantic compiler, since itvuses the
semantic definition of a language which is implicit in
an interpreter. These ideas may be useful since it is

often convenient and easy to express a new language in ?2
the form of an interpreter. ﬁ
These'ideas are not entirely new. BHMcCarthy first
suggested expressing the syntax and semantics of a com-
puter language by an interpreter[hﬂ'%’{l The LISP 1.5
prograumers Manual E)S] contains an example. Lombardi
and Raphael!}2] actually wrote a program to partially
evaluate LISP; however they did not viéw it as a gen-
eralized compiler, but instead as a step toward an

nIncremental Computern" Also, partial evaluation is an
/

optional feature of the POP-Z language (27 .



5

Moere ™™
A¥kso, the attempt to find a normal form for a

lambda-calculus expression is clogsely related to
partial evaluation[S}Hj .

/ﬂ>’ The novelty oi this paper is that all these ideas

; have been pulled togethcrt a particular Algorithm for
I » 15,127
f the specialization of LISPYhas been written, its theo-
; retical properties have been investigated, and examples

of its practical use in compiling various languages are

¥
7 .

given.

ko B A e

e eddilion ) ‘
st Qien L] cetoa ® :»tch? YA o v

I
AL

e

S of foodist suplucliom,



II. The PURELISP Specializer

For convenience in disucssing the specializer,
PURELISY is now defined. VPURELISPY is a simplified
version of LISP 1.5 Zyij designed by the author.
PURELISP is quite similar to the formal mathematical
system of pure LISP defined by McCarthy in Section I
of [15) .

PURELISP includes the five primitive functions CAR,
CDR, CONS, ATOM, and EQ. COND, LAMSBDA, and QUOTE
expressions are also included. Arbitrary atoms
(EXPRATOM's) may be used as functions if they are
defined equivalent to a PURELISY LAMBDAFORM,

PURLLISY is a simple but powerful language. The
EXPRI"ORM allows one to build up recursive functions by
nesting the primitives. It is possible to write almost
any symbolic processing progsram in PURELISP, provided
the side effects ar; not needed.

The semantics of PURELISP are defined by the inter-
preter in[jé,j} < The syntax of the language is also
implicit in this interpreter. This interpreter has
actually been implemented in LISP 1.6 DSJand psed to
interpret statements in PUsLLISP, It is also called by

the PURELISPK gpecializer.



\
b

(4

The CAR or CDR of an atom is not allowed in PURELISP,
This is explicitly indicated in the interpreter by the
function (ERR). Tais is the LISP 1.6 error function.

The syntax of LISP specifies a tree-like structure, -
By starting at the outside of a PURLLISP form and peeiihg
off the functions, one at a tiwme, as the interpreter dos,
one can construct a tree. For example, the formﬁ

({LAMCDA (X Y) |

(coND ((ATOM X) (WUOTE T))
(¥ (coNs X Y)) ))
(GUOTE A) '
(WUOTE B))
expands into fhe tree shown in Figure .

This PURELISP tree has several properties which
should‘be noted:

1. All terminal poiﬁts ofthe tree are data, either
quoted constants or variables.

2. Each non-terminal node represents some operation
on the data (severai nodes arecon;idered to be associated
with LAMoDA and cown) | "“X

3. Each non—terminal node has oneor more lines enterlno
from below, w£1ch representinput dataand exactly one upward

line 1ndlcat1ng output from the operation. '"x\

4. All upward communication of datais indicated by._

the llnPS shown on the tree.

ot L6 S i ¥ S S DS T

S T RN, - P

- / o e

Roughly Speaklng, specializat1on of PUREBISP in-

volves two operations: 1) pruning a branch ofthe tree

which can be evaluated and replacing it with a quoted



8
value, 2) removing a branch of a conditional expression
(which may be evaluated or not) since it is not needed.

A specialization algorithm for PUHLLISY is given
in Tabie I. A simplified summary of the algorithm is
given in Figure I,

This algorithm has two useful properties:

Theorem I: Programs produced by ;he algorithm are
alwaysAcorrect; that is, they prdducéwgame value, upon
evaluation, before or after speoiélization.

Theorem II: A Specialized program always runs as
fast or faster than the original.

Detailed proofs of these theorems are given in[})TJ .
To the reader who is familiar with LISP, it will be
plausible that these properties hold. In reading the
algorifhm remember that in LI:P, NIL=() = P and each

of these symbols mcans both "the empty list" and also

"EFALSEL"



ITI: Examples of Specialization

<‘Actua11y LISP is a particularly good basevlanguage
for specialization sinee (1) LISP programs and data are
interchangeable and, (2) the notation used in LISP is

; expecially convenient.. | -

N Simple examples may givé tﬁé iﬁpréssion that partial
évaluation is a rather trivial process. It would appear
that aspecialized program is simply a shortened and sim-
pii%ied version of the original; and it is true that each
of the six basic rules for specialization of LISP expres-
sion is quite simple (see Table I). However, when these
simple rules are applied to a multiply recursive LISP pro-
gram the resuliing specialized version can be so differgnt
‘in form and structure from the orlginal that tthwo
proarams appear to be entirely unrelated (see Fig. 1).

In such a situation it is perhaps appropriate to say that
the spécializer has written a new program.

‘A good exauple of the use ogéégﬁagt;qsemantlc com-
piler is shown in Figure 2. In this case, E stands for
the LISP function TRANS and its two subfunctiogf fINl
and ELEP. TRANS is a LISP function which applies an

arbitrary transformation to an S-expression A (first

argument of TRANS). TRANS is a bit like an editor. It



10
can also insert new elements. The resulting new expres-
gion is the value of TRANS.

The particular transformation which will be applied
is specified by B and C (2nd and 3rd arguments of TRANS),
Thus we can counsider B and C, taken together, to repre-
sent a particular statement (B €) in a transformation
language L1, TRANS, then, is an interpreter for Li. 1In
the example of Figure 2., B is (X&(%?) Z) and ¢ is (2 X
(R §) NuW), B and C indicate a tragsformation whaich is
to be applied to A, the data. It is assumed that A will
be an S—QXpression iwht a structure corresponding to B.
The transformation specified by these particular values
of B and C could be expressed in English as follows.,
"First interchange the two sub-parts (Q R) of the third
element ol A, then delete thesecond element (Y) of A,
then move the last element (Z) of A to the front, finally
add a new element "NEW" to the end."

In Figure Z, DO is the LISP function which is a
Qfecialized version of TRANS for the particular values
of B and C, In other words, TRANS has been specialized
for A variable, B and C fixed.

In studying this example, certain significant facts
should be noted:

1. DO performs exactly the same action as TRANS on

any data, A, assuuming that B and C have the values given.



11
3, DO -has only one argument, A, although TRANS had 3.
4, The missing arguments B and C are implicit in
the structure of NO.
5. DO is simpler than TRANS andﬁts subfunctions;
and it occupies less storage space (This is not an algo-
rithmic property of specialization, DO could be larger
or smaller than TRANS depending on the size of B and C).
6. DO has a structure quite different than that
of TRANS and its subfunctions. For example, there are
no conditional statements in DO.
7. The structure oif DO i%much like that of C. Thus
one uight say that the data(B and C) have been compiled.
Figure 3 is another example of specialization. The
function specialized here is MATCH which tells if an arbi-
trary S-expression, D, matches a pattern P. P is expressed
in ZIP, a pattern language. Thus one may consider MATCH
[(ZIPAd adiuicen G FL1P L19] )
an interpreter for the ZIP language. This example con-
tains statenents which a human programmer would certainly
simplify. For example:
(EVAL (LIST (QUOTE $A) (4T (CAR A2))))
can be simplified to:
(#a (Car A2))
(4A is a function name in ZIP and is equivalent to ATOM)
This example emphasizes that the specializer is not

an optimizer and suggests that it might be useful to

process specialized code with an optimizer.



12

The HMATCH eoxample has all the sawe properties as the
TRANS example except that the specialized code is larger,
in this case, than the original.

A third examnple ofépecializqtion is given in Figure 5.
Hery an axiom expressé% in first order predicate calculus
was compiled or translated into LISP. This was part of
an efiort to prove theorems more efficiently by means
of compiled axiouws [ 6,%] .

PURELISP has ween used as a convenience in illustrating
basic principles. But for practical purposes, it would
be desirable to have a §§ecializer which accepts nore
of the features usually available in LISP, It isbrobably
possible to extend the specializer to handle all of the
features of LISP 1.5 or LISP 1.6 and still maintain
Theorems I and II. 1In some cases this is rather easy;
in othér cases, hardef.

The functions which change existing list structure .
such as RFLA3A, RPLAID, NCONC, ete. are a difficult

problem. If they are executed, theré is no trouble; but

if they are not executed, them all variables which point

to list structure which would have been changed become
uncertain., There is no direct method in LISP to find
out which variables are pointing at a pafticular bit of
list structure. A garbage-collector~like search is one
possible solution.

EVAL and functional arguments are-a most difrficult
problem. If the‘ﬁéecializer encountered an EVAL state-
ment with an uncertain argument, there is no easy way

to know that the side effects might be. Thus to maintain



13
the truth of Tieorem I, it must béassumed that all
variables, and all data pointed td from the A-list
have become uncertain. The same applies to functional
arguments.

A practical specializer whieh—wses-many-of-the-
-above téchniques has been written and has been in use
since April, 1969. This program is called SPZR. Some
shortcuts have been taken in the difficult cases so
that Theorems I and II are true only for a certain subset
of LISP 1.6. Many programs of practical interest have
been specialized by SPZR; and the results have always
been correct and have always executed faster than the
original.

Often the pattern or format ofa particular variable
is kno&n without knowing the exact value. For example,
one may Kknow that the value of a variable X is always a
list of exactly 7 objects, the first one a non-numeric
atom and the rest numbers., A specializer which could
riake use of such pattérn-type information would be more
powerful than the ones discussed previously since it
could do everything they could do plus umore.

A pattern specializer based on the ZIP pattern lan-
guage was programumed and debugged in September 1969.

This program has proven to be substantially more powerful
than the non-pattern specializers. An example of péttern

specialization is given in Figure 4.



GéaiZ;eA(/ )"},.\),; TLEMS cir P ~.1AL!7HHON

IV:

There are rmany possinle algorithms for partial

evaluation of any language., Different algorithus
have different advantazes and disadvantages., In par-
ticular, the handling of conditional jump statements is

a key question in the foruulation of a partial evaluation

algorlthm. . P ERE f.}z,_.u;j..l{(,n TptAbA R O {‘bl' “—J—.‘/’«{ f"t's«f ~hs ;'.;; ff';,(-'wf..'r"’{u;,

. ~ - 7 ' TR '
Tl ottg Gmad ol et o Aaount "/x““‘“"" e L ROR AN e 2y

The Partial Evaluation of conditional jump state- -
ments (i.e. branching points or flow of control decisions)
raises some interesting problems. During total evaluation
the predicate of a jump statement is evaluated and a jump
is either made or not made. In other words, ﬂﬁwmaxiﬁ

- a two-valued logic (8, ). However, during partial
evaluation, there is a third possibility; that the
predicate cannot ve assigned any definitg value., Thus,
in partial evaluation, ;Iﬁwwaz/ﬁd - a three valued

e logic (T , ? , F). Treatment of theT and F cases is quite
clear; they simply become unconditional jumps. The 1o
case is a different matter. Here we meet two conflicting
requireuents.

1. A good partial evaluator ShOdldSpeCIallae every
branch needed in the final evaluation in order to save lwﬂ?

,5LUQAWﬁ fin§a1 evaluation, tiane.



15

2. A good partial evaluator should avoid working
on branches oi the program not neededin final evaluation
in order to save partial evaluation time.

The trou{be is that we do not know if '?' branches
are necded or not. Thus, fhere is danger that the partial
evaluator will enter branches which would not be entered
during full evaluation. There is not onlyjthe question
of saving time, but there is also'the»égg;;;bn of endless
looping during partial evaluation.

A partial evaluation algorithm will now be pre-
sented. This algorithm is in very general terms and is
presented to illustrate the pronlems involved in the
partial evaluation of conditional jump statements. In
discussing this algorithm, the objectprogram will be
represented as a graph as in Figure 6.

In Figure 4, nodes (o) represent conditional branch-
ing points, branches (arrows) represent fragments of thé
progr;m not containing a branching point and the leaveé
(o) represent the termination points of the program. All
the nodes and branches are named n; and bj (a different
one is subscripted by a different number), respectively.

Let B, express the entry branch, and let m denote the

1
total nuniber of branches.
The Generalized Partial Evaluation Algorithm
At each stage of the partial evaluation, the set of
all variables is partitioned into two subsets; the 'p?

variables, which have definite, known values during

partial evaluation, and the 'r' variables whose values



16
are unknown, and which thereiore must remain in the
objecet program until final evaluation.

At the start or the patial evaluation, values
are assigned to certain varizbles; these become\p/
variables and all others become 'r'variables. There-
after, assignment statements may change the status of any
variable by assigning either a definite or an indefinite
value to that variable.

The algorithm is shown by the following five
operations (1) -(3). (In the description of the algo-
rithm, integer variables g, j(1),...,j(m) and a list
variable L are used. Also a block oX memory spaces, MS,
is reserved for storing the results‘of the partial evalu-
ationv-ag(g) denotes the address in this space where
the result of partial evaluation of branch bg on the
j(g)th iteration are stored.)

(1) Set each of g, j(1),...,j(m) to 1, and set
L to a null.

(2) Allocate the first address of the space MS.
Namely, g&er the triplet (bg, Sg(g), ag(g)) in list L.
Where, Sg(g) denotes theset of 'p' variables and their
current values, and ag(g) denotes the address of the
space in which the product of j(g)th partial evaluation
of bg is generated.

3. Evaluate the portions of b"which_can be evalu-

g
ated only with 'p' variavles and constants. Let lé(g)

express the new program fragument generated by this



17
operation. (bg(g) is a new computation process gencrated
from bg, and bg is left intact.) |

Increment the value of j(g) by land perform oper-
ation (4).

(4) Iz the next process to bg (i.e., the arrow-
head of bg) is a termination symbol (o), then stop the
partial evaluation.

If the next process to bg is a conditional branching
point (1) then perform (4.1) or (4.2).

(4.1 ) 1z n(4) can be evaluated, then select the
branch indicated by the value of nk(i)' Let bp express
the branch selected. Set the value oﬁg to p, and perform
operation (5).

(4.2) 1z (1) cannot be evaluated, then it is left
intact; Let bp and bq express two branches following
m(i)e Set the value of g to p, and perform operation (5).

After that, set the valueof g to q and perform operation

(5) again.
(5) sSearch list L fora triplet whose first and second

terms are the sauwe as the current b_ and Sg(g). (if one

if found; it means that the same branch is being entered
with the same 'p'!' variable values as before. Thus a non-
terminating partial evaluation loop exists). Go to (2)
if no suéh a triplet exists. Otherwise insert into the

newly generated program a jump statement to the position
indicated by the third term ag ofthe triplet. Then stop

partial evaluation,



18
This completes a discriptioh of the generalized

algorithm Now some examples will be given of some

1.
different possible ways the algorithm might act on the
program II represented in Figure 6,

{5v2)—Tf there-is-no.one,-.thon-perform-operatiom (1);-

LIXxample 1 Suppose that the conditional branching points

ny, N, and ng can be evaluated only with 'p' variables

and constants, and that each evaluation of n,, n and

3’

n, selects the branch b b,, and b12 respectively. Then,

6 3’
is transformed by ¢, , into the program described in
Figure 7.

Exanmple 2 bonsider the casz in which n, and ng can be
evaluated only with 'p' variables, and the value of ng
depends on the values oi 'r' variables, Let n, always
select branch b3, and let ng select the dbranch bl3 at
first time and select the branch blz at second time.

Then, ' is transformed by &, into the program described
in Figure 8. _

Example 3 In example 2, if ng selects b13 forever, ¥, ,
does not always terminate its computation and generate
such an infinite graph as descrifed in Figure 9. However,
ir ng always selects b13 simply because the partial evalu-
ation variables of b7 cyclically take the same values,

the computation of X, is terminated by operation (5)

and produces the result described in Figure /0 in the

case when the values of 'p' variables of b7 do not change.



19

In partially evaluating an interpreter with respect to

a source programs which contain loops or recursive calls,
the above case occurs, Thereiore, operations (2) and

(5) are essential for generating a compiler.

Example 4 In Figure t}, let us assutae that ny depends

on the 'r' variables. 1In thiéease, if the iterative par-
tial evaluation of b5 does not produce the same Sgrmore

than once, then an infinite graph will be generated. But

in total evaluatiomn, it is possible that after b3 has

 been computed several times, n; selects b, and the com-

putation will terminate., If b3 does not contain 'r!
variables but)contains an infinite loop; and if n, always
selects bz in total evaluation, then it is a trivial
example of a program whose total evaluation terminates
but whose partial evaluation does not terminate.

This problem can be avoided by the following pro-
cedure: The '?' portions of a program are not evaluated
at partial evaluation time, but values are substituted
for the 'p' variables. This procedure is necessary not
only for the saving of partial evaluation time but also
for protecting the printing of error nessages included
in an interpreter, input-output operations; and other
portions of the object program having a side effect which
do not have to be evaluated at partial evaluation time.

The reason why we make an exception of conditional
branching points in the foregoing procedure is to reduce

the number of nodes and branches, by evaluating as many



20

conditfonal branching points at partial evaluation time
as possible, If the portions of a program following a
'?' branching point contains 'r!' variables, then %, ,
is recursively applied to those portions. It is based
on the idea that because the portions of a 4bﬁagﬁ9WM_“

containing ! variables oiften include
recurstve calls for an interpreter, it is worth taking
a risk with partial evaluation of those portions.
Therefore, functioné, procedures and pseudo-variables
which do not have to be evaluated at partial evaluation
time must be marked and mustABe handled exceptionally,

However, if we describe an interpreter carefully,
‘we can avoid such =2 meaningless loop as the one des-
cribed in the last cace of Example 4, Then ¥%,, can be
modified as follows: X, evaluates all parts of a pro-
gram except for those portions marked aé unnecessary
to be evaluated at partial evaluation time.

A partial evaluation algorithm has been described
in the pfeceding discussion, but the details of the
algorithm are not déscribed. The details are quite
difirerent for each prograuming language.

Example S Partial evaluation of ALGOL program

Let a and b represent lists of integers (i.e. integer
array). a(o)and b(O} contain the length of each list
respectively. a(l}, aiz),..., a(g(O)), b{l), bzz),...,
b(p(b))contain the elements of the lists. The program
concatenating lists a and b is described below. (bigm

denotes the upper bound of arrav a).



2l

berin if a(0) + b{(0 > bigm then goto overfl;

“we

. * 3 1 r 4"- 2 [y, .v/ ‘i
for Lk:=1 step 1 until b{0) do a(K + a{0)):= b(k

al0 :=a(0 4+ blo) ;
end
The result of the partial evaluation of the above

program with respect to b at b(o) =2, b(ll = 10, b(‘a} =
20 is described below.

begin if a(O) + 2 7 bigm then goto overfl;

a(li+ a0l =10; a(2 + aioj =20; a0 = a/0] + 2;

end



v
™ v - (AN AN 3
[P IR N
P 2

V~ v

/

Some of the fundamental provlems associated with
partial evaluation have been solved and others are
still open questions,

The halting problem during specialization can be
solved by the brute force technique of setting an arbi-
trary limit on the numuer or depth of recursions or
iterations. Other more elegant methods can also be
used while still retaining the arbitrary limit as a
backup. Note that this is not the same as the general
halting problem which cannot be solved.

Open ended language f{eatures such as functional
arguments will probably have to be restricted in a
practical specializer. The restriction needed is that
all inputs and outputs of the unknown function must be
made known to the specializer. 1In LISP a sufficient
restriction would be that free variables and subfunctions
which change existing list structure must not be used.

A
In other words, the specializer cannot be expected to

O gt Lo lad
correctly specialize a program whenvpart of that pro-
gram is not given.
The most serious disadvantage of the specializer
as described up to this point is the fact that gt makes

no efiort to conserve free storage space.

If one specializes only carefully selected programs,
. ’ ~



23
the use of storage space can be kept within reasonable
bounds. However, it is not difficult to find examples
of LiSP functions which use up large amounts of storage
space when specialired.
At the present tine, égé-solution to the space

problem is to think through how the specializer will

expand a given problem and then permit it to expand
A

.
St S TEN e LY Ly

only those subfunctions which will expand neatly. SPFR

takes a list of IB¥PR names which may be expanded.

—EXPR*s=not -on-the.list-are-not ‘expandeds

The specializer would be more useful if it could
make such decisions by itself. Some suggestions about
how this might be done are given in[§,7] .

Most of our discussion of partial evaluation has
been based on the assumption that sone variables in the
object program have definite values and others are entirely
unknown. But this is sometimes an awkward way of describing
our partial knowledge of the inputs to the program. Finer
shadings are possible, The ultimate technique is perhaps
to describe all that we know about the program and its
inputs in predicate calculus and then use theorem
proving techniques to specialize the program. This ap-
proach is discussed in(7]. The pattern specializer
mentioned earlier is a step in this direction.

Now let us consider how a specializer can be used.

Perhaps the most obvious application of the specializer
is the compllatlon of speclal languages. ¥§§i§§ééigi£;§i~

»6"‘-’;ur<u:owo ‘A* N A ,-c.m./um ,tll(‘L
~was first ‘developed by one of us (Dlxon) ‘a8-a wmeans- of



24
compiling clauses written in first oxrder predicate
calculus (sce Fig. 6). After this was successfully done,
it was realized that the specializer couald also be used
to compile any other '"language'" provided that the lan-
guage was defined by an interpreter written in LIZP,
For example, the ZIP language was defined long before the
specializer was conceived. ZIP was first implemented
by an interpreter called MATCH which was quite slow.
Since this interpreter was so slow, a compiler
called DEFPAT was written to compile ZIP patterns into
recognition functions. DEFPAT was a conventional land-
made comlpiler. It was a rather laborious programming job.
After the development oy the specializer, it was
found that patterns could be compiled just by speciali-~
zing MATCH with the pattern as quoted data., The LISP
code produced by the specialization of MATCH was similar,

in quality, to that produced by DEFPAT.

In contrast; the compilation of predicate calculus
required a new interpreter, The original one, a resolu-
tion program based on Robinson's unification algorithm
would not specialize well with one argument known. Con-
sequently, an entirely new pro:ram had to be written to
get practical specialization.

“i..: 1t is clear that the specializer can be used as a
general compiler and that such use is practical and con-

venient in at least some cases,



25
It is also clear that, in theory at least, the
specializer can be used to partially evaluate itsel?f énd thus
function as a compiler-compiler, This has not actually
been dohe yet., But there does not seew to be any greatfgrié;w\
in doing so.

It is possible that the partial evaluation technique
will ultimately prove to te the best technique for general
compiling and~00mpiler generation., This possibility is
based on the following assumptions,

1. A sophisticated specializer followed by a good
optimizer will prove to he a highly efficient generator
of code. (O»{;ZLML_;.‘,;;_;'Z’.zfm-\ de Acr A Sa [ 1,3 ’7])

2. The writing oi an interpreter in some convenient
base language is a very handy way to define the syntax
and semantics of an arbitrary new language.

3. There is considerable freedom possible in the
choice of a bése language because the specializer-
optimizer may be followed by a conventional compiler so
that the language ultimately generated is different than

the base language, This was actually done in [4,37,

>

The sequence here was (lst order predicate calculus)
(LISP) —s (MACHINE LANGUAGE) '

4, It is possible to write a specializer-optimizer
which has the desirable property of always producing cor-
rect code and to prove that it has this property. (This

has becn done for one case.) [61 7]



26

5. It is not difficult to write an interpreter
which correctly describes a new language without error,
For one thing, writing an interpreter automatically
forces resolution of semantic ambiguities.’qu,"

6. If properties (5) and (6) are attained, then S

Aﬁﬂu}xJ% tire code generated*&iii/éeri;ee of error, for any proper
statement in the new language.

There are still a gresat many questions to be answered
about specializetion., Perhaps the logical next step |
'would be to design an improved sPecializer for LISP,

Three areas seem quite fruitful for the immediate future:

1. Heuristic rules to(;éé;;é expansion and hold

down the size of the specialized program.

2. Optimization either integrated with or following

the>specializer.

3. Improved capanilities for dealing with partial

knowledze about the values of variables, The

pattern sp:cializer is a step in this direction.



V: CONCLUSIONS

1. A new technicue, partial evaluation, for designing
a generalized compiler has been presented.

2. The same technique can also be used as a eompiler—‘
compiler.

3. Some algorithums for partial evaluation have been
described.

4, One algorithm has been proved to be correct.

5. The good and bad points of the various algo-
rithms have been discussed. |

6. A program to implement one such algorithm has
been written.

7. Several examples were given of the use of this
program as a general compiier.

8. An extention of this technique, the pattern
specializer; has also been implemented.

9. The practical value of the specializer in at
least some applications has ween established.

10, The future possibilities of this technique

were discussed.



-9 - Burstall, R. M. ahd‘Popplestone, R. J., POP-2 reference - - _‘ o
7 "~ manual, Machine Intelligecnce 2, 1968, pp 205-249. T
o S
g Busam, Vincent A. and Englund, Donald E.: Optimization of Expressions
-———-—- in FORTRAN. Com. of ACM, Vol. 12, No. 12, December,1969, 666-674. B —
——— Bibliograshy
“ (wa Cbo | Lre RGT  ond Bifom, 585
—— Tﬂz é/.zaoua,olleﬂ c:f £ g rerud B"ﬁ 74(% PJZMLLA\?
e (- ’-f /I .l AL B _, = e e
S S . o N -
o 5’ - Church, A.: The Calculi of Lambda-Convers:.on, Princeton Unlvers:.ty )
Press, Prlnceton N. J o 1941



N

Dixon, J.K., "An Improved Method for Solving Deductive Problems on a
Computer by Compiled Axioms,' Doctoral Dissertation, University of Calif.
Davis, Dept. of Applied Science Engineering, Sept. 1970, (available from
University Microfilm, Ann Arbor, Mich.)

Dixon, J.K., '"The Specializer: A Method of Automatically Writing Computer

Programs,'" (to be published).

Dixon, J.K., "Experiments with a Z-Resolution Program,' (to be published).

1) = Teldman, J. A., A formal semantics Tor computer-oriented

languages. Compui. Ctr., Carnegie Institute of Technology,

1964. B
) — - o e
by Yo Loctis Evudlen 0 teniwn lin Prgig g e .
. 5 ) by SN
Qpdcase Ao o Sl oo Selven DT Taddl £ N S
; T . . Lz . s P . . ) / |
) ::,1( L e Y /u'wk PR A ,,/ét': () U
coy LT . s BLESL &0 ad
: t r".L f\i _‘J‘ o Fe f:‘l - .,/. _‘\ \‘f PEA ‘./:_ L L’i.;{:“ — ;..-:’.J-; — _
o . . ’ - S
Lombardi, L.A. and Raphael, Bertram: "LISP as the language for an i o
©  Incremental Computer." The Programming Language LISP: Its Operation )
-.- and Applications. The M.I,T. Press, Cambridge, Mass., 1964, 204-220 - - e



—— - « e T e D Y
e T e " ! - N SRR
-3 STy T T LI Lt s e S T
¢ =, o - -

’ ) \ 7 ) ‘ o . .
. ) - - g }
S Lt co te " /ﬁ(’fC SN CbanRFLT  TEZ
DLW s lee VoL .

Y McCarthy, J.: A Basis for a Mathematical Theory of Computation.

-~ .. Computer Programming and Formal Systems (Eds. Braffort & Hirschberg),
Amsterdam, North Holland, 1963, 33-70.

]S ... McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. and Levin, M.I,: -
LISP 1.5 Programmer's Manual. MIT Press, Cambridge, Mass., 1962.

_l¢ —» McCarthy, J. and Painter, J.: Correctness of a Compiler for Arithmetic T
Expressions. Stanford Artificial Intelligence Project Memo #40, I

—— === April, 1966,

gy

Nievergelt, J.: On the Automatic Simplification of Computer Programs.
7 Com. ACM, June 1965, Vol. 8, No.6, 366-7. .

S Quam, Lynn H.:-Stanford LISP 1.6 Manual, Stanford Artificial Intelli-
- gence Project, Stanford, California, Dec. 31, 1968.

-~ 19" reitelman, W.: FLIP - A Format List Processor. MIT Project MAC . —‘
, Wl
e Memo M-263, Cambridge, Mass., Sept. 1, 1965. | —_

“ 3 . . — - R




N

5.

QUOTEFCRM
VARTABLE

SUBRFORM

EXPRFORM

LAMBDAFORM

~

TABLE I
Speciclization Algorithm for PURELISP

o

If E = (QUOTE V), a PURELISP QUOTEFORM then

=4

El

(QUOTE V)

If E = X, a PURELISP VARIABLE and if the A-list contains

(X QUOIE V); then E' = (QUOTE V) otherwise E' =X

If E = (FN Al A2 A3 An), a PURELISP SUBRFORM, then
first, all the arguments are specialized, then if any
A' is pot a QUOTEFORM,

i

E' = (FN A* A" A' .. A') otherwise E' = (QUOLE E¥)
1 2 3 n

If E = (FN A A2 A3 An) and if the length of the
A-list is greater than some constant DMAX then E is
treated like SUERFORM above. Otherwise the EXPRATOM, N,
is replaced by'the IAMBDA function a.ssigned +0 FN and
the resulting LAMBDAFORM is treated as shown below.

If E = ((LAMBDA(Xl X2 Xn) El) Al A2 An) firs*b
all the arguments (A1 A2 ces An) are specialized then

E 1 is specialized using an A-l1ist which inecludes the -
variables Xl through Xn paired with the corresponding
arguments. If any A:’L is not a QUOTEFORM

E' = ((TAMBDA (X; xj e X)) EDD) A A';.‘... Al

where (&, Aj wes A ) arve all Of the A's excepting those

~

which are QUOTEFORM's and those which are variables ~_

identical to the corresponding X. However, if all

A' are excluded then: E' = Ei
i



6. CONDFORM  IL E = (COND(PJL Vl) (P2 V,) ... (B, V) each PV pair
is specialized and action taken as indicated below

VALUES - ACTION
P! V! Current Pair Rest of List

1 NIL - ) drop ] continue

2 T V! keep drop

3 T ERR drop drop

A ? v keep continue

5 ? ERR drop. continue

6 ERR - dron _ drop

where NIL means (QUOTE NIL) - -

T means some quoted value other than NIL

? means _some unquoted value
ERR means an error message

- means anything (not necessary to specialize)
V! means anything but an error message

If two or more pairs are kept during the atove procéssing then
E' = (COND(P! v!) (P! v1) ... (B! V'))
i i Jd J n m
which includes only the kept pairs. If only one pair (P{ V') 1s saved
i

B - Vi. If no pairs arc kept then E' = ERR,

.

W
o



D
O

]

Figere %W Summary of PURZLISP Specialization

1. VApoABIE:

pe e X l .
(QUOTE x*)

2. LAVEDAFORM
1 1
((1AMBDA (x y) E) Ax Ay) - ((1AMBDA(x y) E') A, Ay ) l

((raMBDA (x) E') Ax') |

E' |
(QUOTE EX)
3. QUOTEFCRM

(QUOTE V) . = (QUOTE V)
4. coimom | .
3 \'s - A 1 Y (p ! 1 1 1
(conn(z.V,) (2, V,) (P3 V) ..l) (coxn(e, v R, )z, v,
(conn(, * Vl')(PB' VB') cedd | oe]

Vn" .

(QUOTE V)
. n

(Fl’\ "AA A ooo) . Loadl (EN A' A‘ aco) ‘
- 1 2 !
- ~same as LAMBDAFORM *

6. SUBRFORM

(FNAA ...) - (FNAlar L)) |
12 . 1 2
(QUOTE E¥)



3
(-
Pigure T  Specialization of TRANS

(DEFPROP TRANS
‘ (LAVBDA(A B C)
(coND ((NULL C) F)
((aTov ¢) (COND ((ELEP C B) (FINL A B C)) (T C)))
(T (CONS (TRANS A B (CAR C)) (TRANS A B (CDR c))N)
(NOTE* :
(PRANSFOZS A AS B VWiAS MADE INTO C)
(B & C ARE LINKED BY COMMOM ATGCMS)
(A & B ARE LINKED BY COMMON STRUCTURES)))
EXPR)
* (DEFPROP ELEZP
(LAMBDA(E L)
(COND ((ATOM L) (EQ E L))
((EQUAL E L) T) .
(T (OR (ELEP E (CAR L)) (ELEP E (CDR L)))))
{NOTE »
(PREDICATE * TELLS IF E IS AN ELEMENT)
(IN ANY PART OF ARBITRARY EXPRESSION L)))
EXPR) ’
(DEFPROP FIN1
(IAMBDA(A B C)
(coND ((NULL B) F)
((ATOM B) (COND ((1q B C) A) (T F))) _
((ELEP C (CAR B)) (FINL (CAR A) (CAR.B) C))
(T (FIN1 (CDR A) (CDR B) C)))
(NOTE %
%
(FIN1 RETURNS THE ELEMENT OF A WHICH)
(CORRESPONDS TO THE ATCM C IN B)
(A AND B HAVE PARALLEL STRUCTURE)))

EXPR) . oo

TEST ARGUMENTS: A = (AB (K L) (ZX)) B= (XY (QR) 2)
) . c =(z X (R Q) NEW)
- ‘(TRANSABC)=((ZX)-A(LK)NEW) (time = 150 + 5 MS)
(DO A ) = ((2 X) A (LK) NEW) (time =8 + 3 MS)

DO is a specialization of TRANS for B & C fixed, variable specialization
time: 15550 MS specialization time ratio 15550/140 = 60 ‘

(DEFPRC? DO
(1AMBDA(A) ~
(CONS (CAR (CDR (CDR (CDR A4))))
(CONS (CAR A)
(cens
(CONS
(CAR (CDR (CAR (CDR (CDR A)))))
(coNs (CAR (CAR (CDR (CDR A))))

(QUOTE NIL))) ‘ ~

(QUOTE (NEW))))))

EXPR)

- e




3 | . 371
Figurc & Speeialization of MATCH

(DEFPROP MATCH
(LAMBDA(P D)
(COND ((ATOM P) (MAT1 P D))
((ATOM D) F)
(T
(AND (MATCH (CAR P) (CAR D))
(MATCH (CDR P) (CDR D)))))
(NOTE * '
% .
(MATCH IS A PREDICATE WHICH RETURNS T)
(IFF THE PATTERN P MATCHES THE DATA D)))
EXPR)
(DEFPROP MATL
(LAMBDA(G E)
(COND ((GET G (QUOTE PATF)) (EVAL (LIST G (QT E))))
((GET G (QUOTE PATFG))
(EVAL (LIST G (QT F) (QT E))))
((GET G (QUOTE PATT))
(MATCH (GET G (QUOTE PATT)) E))
(T (2Q G E)))
(NOTE =

(MAT1 IS A PREDICATE WHICH RETURNS T)
(IFF THE PATTERN ELEMENT G MATCHES THE) -
(DATA ELEMENT E (G MUST BE AN ATOM))))

EXPR)
TEST ARGUMENTS: P =($A B$) D= (A B C)
(MATCH P D) = T  (time: 117 * 5 MS)
(KP D) =T (time: 10 + 2 MS)

KP is a specialization of MATCH for P fixed D variable. .
Specialization time 3167 * 50 MS specialization time ratio = 3167/107 ~ 30

(DEFPROP KP ‘ 4 .o
(LAMBDA(A2) ,
(COND g(ATOM A2) (QUOTE NIL))
T
(AND éEVAL (LIST (QUOTE $A) (QI (CAR A2))))
COND
E(ATO\A (CDR A2)) (QUOTE NIL))
T
(AND (EQ (QUOTE B) (CAR (CDR A2)))
(COND
g éATOM (CDR (CDR A2))) (QUOTE NIL))
(AND
(EVAL

(LISt (Qco'rv $)
{QT (CAR (CDR (CDR 42))))))
(EQ (QUOTE NIL)
(CDR (m (COR A2)NDNNNIN)

- .

EXIR)



L{'
Figure J  Specialization of ELEP when the Second
Arpument is a Pattern.

(EIEP x1 x) x = (KLAB) x1=B8
evaluaticn time: 17 + 4 MS
speeialization for x = (FA $A A B)
specialization time = 2300 £ 100 MS
(EPx1 x) x=(KLAB) x1<B
evaluation time: 10 + 3 MS

specialization ratio 2300 ~ 300

7

(DEFPROP EP
(LAMBDA (X1 X)
(COND E(EQUAL X1 X) (QUO”E T))

(OR (EQ X1 {CAR X))
(COND
g(EQUAL X1 (CDR X)) (QUOTE T))
T
(OR (EQ X1 (CAR (CDR X)))
(COND
((EQUAL X1 (QUOTE (A B))) (QUOTE T))
(OR (EQ X1 (QUOTE A)) |
(COND
((LQJAL X1 (QUOTE (B))) (Q,UO‘I‘E T))

' (OR (EQ X1 (QUOTE B))
: (EQ X1

o - (QUOTE NIZ))))))NNN)

40,



L.

Vot

Figure ¥ Symmetry Axiom of EQ S-compiled

(DEFPROP RDG
(rAMBDA (IA LB)
(COND
((NEG LA)
(COND §(NEG LB) (QUOTE NIL))
T
(COND
((EQ PA (QUOTE EQ))
(COND
((EQ PB (QUOTE EQ))
(OR
(RES4
(CONS ~
(CAR (C€DR FA))
(CONS (CAR EA) (QUOTE NIL)))
EB))) g
(T (QUOTE NIL))))
(z (T (QUOTE NIL))))))
(COND
({NEG 1B)
(COND
((EQ PA (QUOTE EQ))
(COND
((2Q PB  (QUOTE EQ))
(OrR
(RES/
(coNS (CAR (CDR EA)) -
(CONS (CAR EA) (QUOTE NIL)))
EB)))
(T (QUOTE NIL))))
(T (QUOTE NIL))))
(T (QUOTE NIL))))))
EXPR)



6

Fig, 2 — Graph representation of computation process = .

. : . , < -
Dyjeoey n., are names given to the nodes.A bl"f" 1

are names given to the branches. -



A

7
Fig. - Example 1

. g e 8 f
S . Pig. @ —- Exauple 2

-
T g e



. et e cen e

by b wme ey b

I
e eoee smmm e

P,

.
-

Y
v

\ Pig. ,‘f—-— Example 3 (non—terminiating) .

L~

T R



|
g ib.

A, ::"_/_/"‘
)
OL

b,

i :
' Pig. ¥ -~ Exauwyle 4




