ELl PARTIAL E'.LUATOR

(Progress Report)

Submitted to
Dr. Ben Wegbreit
Center for Research in Computing Technology
Harvard University

Cambridge, Massachusetts

By
Yoshihiko Futamura
Applied Mathematics 260

January 24, 1973

1 Introduction

The aim of this report is to provide information concerning
work done, problems encounterqqpnd difficulties overcome while
the project for the ELl partial evaluator has been under way since
October, 1972.

The goal of the project is to implement a partial evaluator o
for EL1 whichvhas the properties described below,

& is a partial evaluator such that:

o (int,s)(r)=int(s,r) (1)
for arbitrary program int and its arguments s and r. We can
derive following equations from (1),

d (int,s)(r)=4d (4 ,int)(s)(r)

=d (d oy)(int)(s)(r).
If we consider int,s,and r as an interpreter, a source program and
runtime data respectively, then J (int,s), Q& (d ,int), (& k)
can be considered as an object program, a compiler and a compiler=
compiler respectively. In order to be useful, ¢ has to have
following two properties.
1) d should evaluate as many portions of programs (e.gs int, &)
as plssible in order to save time during final evaluation,
2) J. shoule avoid working on portions of the program not needed

in final evaluation in order to save partial evaluation time,

Work done ist
(1) finding an efficient procedure to terminate loops during
a partial evaluation which is caused by the partial evaluation

of equal programs in equal environments,

2
(2) formalizing a class of partial evaluations and partly design-
ing a partial evaluator for the class,
(3) coding a part of the partial evaluator in EL1.
The result of (1) and (2) will be described in Section 2 of
this report.
Problems encountered are:
(1) terminating a loop during partial evaluation time,
(2) backtracking the environment for the partial evaluation of
conditionals,
(3) embeding the partial evaluator in EL1,
(4) avoiding the execution of an assignment which has undésirable
side~effect,
Difficulties over come are,probably, (1), (2), and (3) above.
The solution to (1) and (2) are described in section 2 of this paper,

The solution to (3) is to consider a partial evaluator as a special

case of the closure in ELl}
Problem (4) nasVnot solved yet. It will take a little bit more
fegm

time to solve the problem, Coding of the partial evaluator will

be another big problem because of the complexity of the algorithm.

1Ben Wegbreit '"Procedure closure in ELL" Center for Research
in Computing Technology, Harvard University, Cambridge, Massachu-
setts, March, 1972,

2 Partial evaluator

This section describes techniques for implementing EL1l partial
evaluator, The partial evaluation algorithm described in the lite-
rature1 can be constructed for ELl based on the ELl evaluatora.

The closure in ELlBWill specify an initial set of p-variables and

their values,

2,1 Simple parﬁial evaluation
The concept of a partial evaluation has been described in the
literature1 informally. We know that there are infinitely many
possible partial evaluation algorithms, However the algorithm
which is desirable should have properties listed below.
(1) It should be efficient (i.e. runs fast),
(2) Object programs produced by partial evaluation should be
executed much faster than the soﬁrce program,
(3) Object programs should be always correct,
It is usual that optimizers change the logics of a source
program4. However in a partial evaluation, where the logics of
a source program play very important role, only a small change of

the logic will cause the production of an erroneous ogject progranm,

lYoshihiko Futamura '"Partial evaluation of computation process,
an approach to a compiler-compiler" J.Inst.Elect.& Gom.Eng, of Japan

Vol, 54-6,No0.8, August, 1971.

2Ben Wegbreit "Studies in extensible programming languages'
ESD=TR=70-297 ,Harvard University,Cambridge,Massachusetts,May,1970,

S "Procedure closure in EL1" op. cit.

“E.S.Lowry and Medlock "Object code optimization" Comm.ACM
12,1(January, 1969) 13-22,

L
So we must be very careful about the point (3) above. Notice that
the more powerful a partial evaluator is, the more erronneous object
programs it produces. For example, if a partial evaluator only
substitutes given values for corresponding variables like a macro
processor, it will not do any harm. If a partial evaluator evaluates
all portions of a source programs which can be evaluated based on
given values and if the source program contains operatom which have
side effect, the object program will be almost always erroneous except
a trivial case.,

What we are going to do now is to define a partial evaluator
which runs fast, always produces a correct and reasonably efficient
object progranm, This partial evaluator will do the simple partial
evaluation defined in this section,

W use the terms listed in Figure 1 in the fo;lowing discussion,

term meaning
source program procedure to be partially evaluated

object program result of a partial evaluation

p~-time time at which a partial evaluator runs
r-time time at which an object program runs
p~variable variable in source program to which data are

assigned at p-time

r-variable variable in source program other than p-variable
p~value value of p~variable
p~object data which are processed at p-time (p-object

will be p-value)

p-environment system which defines values ofp-variables in
a source program, This may be changed by
assignments of a p~object to a p-variable
during p-time, '

Figure 1l: Summary of the meaning of terms

5
Definition 1: A partial evaluation is simple iff it does not contain

execution of
(1) operators which destroy p-objects
(2) I/0 operations
and
(3) code procedures with a free variable which is not compatible
with declared variables in a source progran,
GENSYM in LISP and a machine coded random number generator are the
kind of operators mentioned in (3).

We will abbriviate a simple partial evaluation as SEP in the
rest of this paper. SPE of a part of a source program s is rep-
resented by SPE(S).

This definition of SPE matches the requirements for a procedure
call to be evaluated during‘compilation described by Wegbreitl.

In theory, we can construct a partial evaluator for SPE as
follows:

Before executing one step of a partial evaluation, check the
following conditions,

(1) If an assignment is going to be executed , check whether the
target of the assignment can be reached from p-variables
by tracing p-objects (as a grabage collector does).
If it can be reached, don't execute the assignment but
generate an assignment statement in order to be executed

at r-time, If it can't, execute the assignment,

lBen Wegbreit "Procedure closure in EL1" op.cit. page 22,

6
(2) If an I/O operation or a code procedure with a free variable
is going to be executed, don't execute the operation but
generate the operation in order to be executed at r-time,
However operation (1) is too expensive to be practical. We will
discuss the practical simple partial evaluator latér,
Equivalence problem of SPE is discussed here,

Definition 2: PENV(s) is a p~environment at the entrance of a part

of & source program s,
It is clear that two SPE(s)'s are equal if PENV(g)'s are equal,

Definition 3: A local p-environment (LPE) of a SPE of a part of a

source program s is a set of ordered pairs (V,0) such that:
"V is a p-variable which appears in the course of SPE(s) and has
the p-object pointed to by O as its value when it is reﬁg}eddfor
the first time," &
| We represent & LPE of SPE(s) as LPE(s), Intuitively, LPE(s)
is a set of initia; values of p-variables contained in s and refered to
by SPE(s).

Note that the construction of LPE(s) starts at the entrance of
s and finishes at the end of s, If s is a recursive procedure or
a loop, the construction of a new LPE(s) starts before the old LPE(s)
has been completed, This situation can be illustrated graphically
in Figure 2,

Let s:L represent the i-th entry of a recursion oraloop to s.

Definition &4: LPEi(s) is a set of ordered pair:(V% ol) such that:

" vi

is a p-variable which appears in the course of SPE(si)
before SPE(si+l) starts, 0i is a pointer to the value of Vi when

it is refered to for the first time."

7

st Then LPE(s™)=g, (i)
> LPE, (s)
s where gi(l)zLPEi(e)
LPEz(s) ' gi(n+1)= {(v?+1’0§1+1) € LPEn+1(s) ‘
: Vg+lf Ve for all (V%, O) in gi(n)}\)gi(n)'
X ,
s
LPE, (s)

Figure 2: Recursive call (or
loop) and the construction of
LPE,

Note that the value of a p-variable V can be get from the p-
environment, The p~environment has an usual stack structure and
keeps the values of variables (both p-variables and r-variables)
appeared in the course of SPE, The p-environment associates NOTHING
with r-variables and p-objects with p-variables., When NOTHING is
assigned to a p-variable w or to a part of the p- object which is
a value of w, w becomeé r-variable,

Definition 5: LPE}(s) = {v,on | v,0 € LPE,(s) and O' is the

pointer to the value of p-variable V at the (i+l)=-st €ntry to s.}

LPEg(s) represents the current values of p-variables, which

were rei;\gred to in the SPE(s™), at the entrance of SPE(si*}),

Theorem: Let s be a recursive procedure or a loop, If it happens
to be LPE,(s)=LPES(s) for some i in SPE(s") then SPE(s®)=SPE(si*l)
and the SPE will never terminate,

Proof: Intuitively, LPEi(s)=LPE§(s) means that the initial values of
p~-variables at the i-th entry of s and that of at the (i+l)-st entry
of 58 are equal, Since SPE has no side effect,‘SPE(si) and SPE(s+*1)

will do the same computation and loop., More formal proof is given

below,
Assume that LPEi(s) has been constructed in the order (Vl,Ol),...,
(Vm’om) and that the construction of LPEi+l(s) advances in the order

i+l
~(vl,ol),...,(vn,on). If V, --vi and O;=o0, for all i then SPE(s™" ") does

the same computation as SPE(s)e Because SPE has no side effectV
oy dhdbqun p-o@@&otA

and every two SPE(s)'s which have the same initial pointers to

’

p-values produce the same object program,

Assume that there is some i such that (V ,O)f(vi,o

If V,=v, then O =0, by LPE_ (8)=1PE®(s).
i'i i i

50 Vy=v19070 s eeesVy 975100535051

i+l

and Vifvi.
Since both SPE(sY) and SPE(si*l) refer to the same variable-

values until they refer to Vi and Ve they should do the same
computation by that-timg and those varilables should be on the

same path of s, So the p~value of vi has been set outside of
spE(s*h).

4 Was set in SPE(sY) then there is some N
j such that ijvi,oj#oi. However this is against LPEi(s)=

(a) If the p-value of v

c
(b) If the p-value of v, was set before sPE(sY) starts then
Vi=vi.
Therefore there cannot be any i such as assumed above,

So LPE, (s)=LPE, .(s) and sPE(s1) ana spE(sitl

) do the same compu-
tation and produce the same object.program. If a recursive call

or a loop repeat the same computation, it will never terminate.

2.2 Simple partial evaluator
This section roughly describes the algorithm for SPE of the
three types of forms in EL1,
2.2.1 Procedure application
Assume that
(1) 5:F(Al,.eey8n); is called (s is a label)
(2) Ail, ..., Aip are known (p-values)
(3) Ajl,ee0y,Ajq are unknown
() XL,eeeyXn are formal parametors of F
Then push (Xil,A11l),...,(Xip,Aip),(Xj1,NOTHING),e4.,(Xjq,NOTHING)
. on the top of PENV(s)., This new PENV is PENV(F).
If there is an entry in the Function-stack shown in figure 3,
check whether LPEi(F)=LPE;(F). If it is true then the value of

SPE(F) is in object-table(k) as shown in Figure 4, If it is false

then push [F | —4{->|{NIL [free| on the top of the function-stack

7

and do SPE of the body of F.

| ok —F—sobje program
\ ~
FI e @l & e —>
Figure 3: Function-stack Figure 4: Object-table

This stack keeps procedure names,

their LPEi

object program,

s, and the address of the

10
2.2,2 Conditionals
Conditionals appear in the following context:
5:BEGIN ,.., p=> e cljc2;... END:
8l;3;823.40
(1) If the value of p is known then generate
(a) BEGIN ...;SPE(e):END; SPE(sl);SPE(82)j... if p is true,
(b) BEGIN .,.;SPE(cl);SPE(c2);... END;SPE(s1);SPE(82)5...
if p is false,
(2) If the value of p is unknown then generate
vl &0l; V2 €025 c0e
BEGIN ...3SPE(p)=» SPE(e);SPE(cl);..,, END;
SPE(81) 3SPE(82) 5440
If a value of p-variable vi in PENV(s) will be changed in SPE(e),...
ENDj then assignment vi «{value of vﬁ% should be generated in
order to be executed at run time, And PENV(s) should be changed
so that vi will be r-variable, This generation of assignments
avoids the neceésity of generating SPE(sl);SPE(82);... twice for
both SPE(e) and st(cl);SPE(cz);...END.
2.2.3 Iteration
8:FOR i « forml, {formz 5..., form3 Ltesti DO form;
(a) If forml,form2, and form3 are known then do the SPE of
conditionals test=» form; for each i,
(b) If one of them is unknown then generate
Vvl 4£0l; v2 &025... e
FOR i <hSPE(form1),{:SPE(formZ)ﬁ'%SPE(formB)g SPE(test)sDO

SPE(form)

11
If a value of p-variable vi in PENV(s) is going to be changed in
SPE(form) then assignment vi <= (value of vi);should be generated

in order to be executed at r-time. And PENV(s) should be changed

8o that vi will be r-variable,

